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Introduction

Stepping stone model (Kimura, 1953) (here, in discrete time)

Colonies of fixed size N are arranged in a geographical space, say Zd

... ...

(d = 1 in this picture)

For each child: Assign a random parent in same colony with probability
1− ν, in a neighbouring colony with probability ν

... ...

More generally, at for each individual in colony x , with probability
p(x , y) = p(y − x) assign a random parent in previous generation from
colony y

“Trivial” demographic structure, but paradigm model for evolution of type
distribution in space
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Introduction

Stepping stone model: Ancestral lines

... ...

... ...

... ...

... ...

... ...

... ...

... ...today
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Introduction

The stepping stone model

Fixed local population size N in each patch (arranged on Zd), patches
connected by (random walk-type) migration

Pros: + Stable population, no local extinction, nor unbounded growth

+ Ancestral lineages are (delayed) coalescing random walks (in
particular, well defined),

this makes detailed analysis feasible, yields via duality:
long-time behaviour of (neutral) type distribution

Cons: − An ‘ad hoc’ simplification, effects of local size fluctations not
explicitly modelled

− N is an ‘effective’ parameter, relation to ‘real’ population
dynamics is unclear

− Grid not so realistic for most populations
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Introduction

Remark: A problem with branching random walk

(Critical) branching random walks, where particles move and produce
offspring independently, explicitly model fluctuations in local population
size, but do not allow stable populations in d ≤ 2:
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(Felsenstein’s “pain in the torus” 1975; Kallenberg 1977) 7/42



Introduction

Remark: A problem with branching random walk, 2

One could try to slow down the branching:

Self-catalytic critical branching random walks (in continuous time)

a = (ax)x∈Zd . . . a probability kernel

b : N0 → [0,∞) . . . branching rate function, b(0) = 0

Particles perform independent continuous-time random walks on Zd

with jump rate 1 and jump increments drawn from a

When currently k particles at x , at rate b(k) one of them performs
critical (binary) branching, i.e.
disappears or doubles, each with prob. 1

2

note: each particle branches then at rate b(k)/k ,
b(k) = c · k corresponds to independent branching rw
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Introduction

Even b(k)� k cannot prevent clustering

Self-catalytic branching rw, b(k) = k1/10 in d = 1 (on Z/(500Z))
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Introduction

Even b(k)� k cannot prevent clustering

ηx(t) . . . number of particles at position x ∈ Zd at time t ≥ 0,

assume supx∈Zd E[ηx(0)] <∞

Theorem (B. & Sun, 2017).

If b(1) > 0
and motion with the symmetrised kernel âx = (ax + a−x)/2 is recurrent
(e.g. finite variance and d ≤ 2),

lim
t→∞

P
(
ηx(t) = 0

)
= 1 for all x ∈ Zd .
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Introduction

A simulation, b(k) = 1{k=1}
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Discrete time contact process and oriented percolation

Outline

1 Introduction

2 Discrete time contact process and oriented percolation
Ancestral lines, RWDRE and a CLT
Central proof ingredient: Regeneration construction

3 Logistic branching random walks and ‘relatives’
Long-time behaviour: Coupling and convergence
Ancestral lineages in the spatial logistic model

12/42



Discrete time contact process and oriented percolation

The discrete time contact process

ηn(x), n ∈ Z+, x ∈ Zd , values in {0, 1}.
Site x is generation n is “inhabited” (or: “infected”) if ηn(x) = 1.

Dynamics: U
(

= {y ∈ Zd : ||y ||∞ ≤ 1
)
⊂ Zd finite, symmetric, p ∈ (0, 1).

Given ηn, independently for x ∈ Zd ,

ηn+1(x) =

{
1 w. prob. p · 1(ηn(y) = 1 for some y ∈ x + U)

0 w. prob. 1− p · 1(ηn(y) = 1 for some y ∈ x + U)

Interpretation:
In generation n + 1, each site x is (independently) inhabitable with
probability p.

If ηn(y) = 1 for some y ∈ x + U, the
particle at y in generation n places
an offspring at x .

gen. n + 1

gen. n

If several y are eligible, one is chosen at random.
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Discrete time contact process and oriented percolation

The discrete time contact process ...
... viewed as a locally regulated population model

Neighbours compete for inhabitable sites, so individuals in sparsely
populated regions have on average higher reproductive success.

This is particularly evident in the multitype version, where particles carry
a type, e.g. from (0, 1), and offspring inherit parent’s type.

n + 1

n

expected no. of red offspring:
3p > 1

expected no. of red offspring:
31
3p = p < 1
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Discrete time contact process and oriented percolation

Alternative view: Directed (site) percolation

ω(x , n), x ∈ Zd , n ∈ Z, i.i.d. Bernoulli(p)
Interpretation: ω(x , n) = 1 : site (x , n) is inhabitable/open,

otherwise not inhabitable/closed

space Zd

tim
e

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

Open paths:

m < n, x , y ∈ Zd : (x ,m)→ω (y , n) if there exist x = x0, x1, . . . , xn−m = y
such that ||xi − xi−1||∞ ≤ 1 and ω(xi ,m + i) = 1 for i = 1, . . . , n −m,

C0 := {(y , n) : y ∈ Zd , n ≥ 0, (0, 0)→ω (y , n)} is the (directed) cluster of
the origin
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Discrete time contact process and oriented percolation

Critical value

−40 −20 0 20 40

0
20

40
60

There exists pc ∈ (0, 1) such that

P(|C0| =∞) > 0 iff p > pc .

If p > pc , P(C0 reaches height n | |C0| <∞) ≤ Ce−cn for some
c ,C ∈ (0,∞).
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Discrete time contact process and oriented percolation

Stationary contact process and directed percolation

Assume p > pc (from now on).
Start with η−m(y) ≡ 1 at time −m < 0, then (n > −m)

ηn(x) = 1 ⇐⇒ ∃ y ∈ Zd : (y ,−m)→ω (x , n).

time n

time −m
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

m→∞ yields (ηstatn )n∈Z, the stationary (discrete time) contact process

ηstatn (x) = 1 “⇐⇒” Zd × {−∞} →ω (x , n)

(the law of ηstat0 is the upper invariant measure, the unique non-trivial ergodic

stationary distribution)
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Discrete time contact process and oriented percolation Ancestral lines, RWDRE and a CLT

Outline
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Discrete time contact process and oriented percolation Ancestral lines, RWDRE and a CLT

An ancestral line in the stationary contact process

(ηstatn (x), x ∈ Zd , n ∈ Z) stationary DCP, assume ηstat0 (0) = 1.

−40 −20 0 20 40

−
60

−
40

−
20

0

Let Xn = position of the ancestor of the individual at the (space-time)
origin n generations ago.

Given ηstat and Xn = x , Xn+1 is uniform on

{y ∈ Zd : ||y − x ||∞ ≤ 1, ηstat−n−1(y) = 1} (6= ∅).
To avoid lots of −-signs later, put ξn(x) := ηstat−n (x), x ∈ Zd , n ∈ Z.

Note: ξn(x) = 1 ⇐⇒ “(x , n)→ Zd × {+∞}”
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Discrete time contact process and oriented percolation Ancestral lines, RWDRE and a CLT

Directed random walk on the supercritical oriented cluster

ω(x , n), x ∈ Zd , n ∈ Z, i.i.d. Bernoulli(p), p > pc

ξ(x , n)
(

= ξ(x , n;ω)
)

= 1 iff “(x , n)→ω Zd × {+∞}”

Put C := {(y ,m) : ξ(y ,m) = 1} (the “backbone” of the oriented cluster, i.e.

“dangling ends” are removed),
U(x , n) := {y : ||y − x ||∞ ≤ 1} × {n + 1}

Let X0 = 0 (∈ Zd),

P(Xn+1 = y | ξ, Xn = x ,Xn−1 = xn−1, . . .X1 = x1) =
1(y ∈ U(x , n) ∩ C)

|U(x , n) ∩ C|

It turns out: (Xn) is similar to “ordinary” random walk on large scales.

(It is a random walk in dynamic random environment, but somewhat
non-standard from RWDRE point of view.)
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Discrete time contact process and oriented percolation Ancestral lines, RWDRE and a CLT

LLN and CLT for directed walk on the oriented cluster

Theorem (B., Černý, Depperschmidt, Gantert 2013).

Let B0 := {(0, 0) ∈ C}, p > pc .

P
(1

n
Xn → 0

∣∣∣B0

)
= 1 and P

(1

n
Xn → 0

∣∣∣ω) = 1 for P( · | B0)-a.a. ω,

there exists σ ∈ (0,∞) s.th.

lim
n→∞

E
[
f
(

1
σ
√
n

Xn

) ∣∣∣ω] = E
[
f (Z )

]
for P( · | B0)-a.a. ω

for any continuous bounded f : Rd → R, where Z is d-dimensional
standard normal(

in particular E
[
f
(

1
σ
√
n

Xn

) ∣∣∣B0

]
−→
n→∞

E
[
f (Z )

] )
.

An invariance principle holds as well.
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Discrete time contact process and oriented percolation Central proof ingredient: Regeneration construction

Proof ingredient: A local construction of the walk

For x ∈ Zd , n ∈ Z let ω̃(x , n) =
(
ω̃(x , n)[1], ω̃(x , n)[2], . . . , ω̃(x , n)[3d ]

)
an

independent uniform permutation of U(x) = {y : ||y − x ||∞ ≤ 1}.
(x , n)

ω̃(x,n)[1]ω̃(x,n)[2]

k = 1 k = 2 k = 3 k = 4

For a space-time point (x , n) and k ∈ N define a (directed) path γ
(x ,n)
k of

k steps that begin on open sites, choosing directions according to ω̃:

γ
(x ,n)
k (0) = x ,

if γ
(x ,n)
k (j) = y then γ

(x ,n)
k (j + 1) = z , where z is the element of{

z ′ : ||z ′ − y ||∞ ≤ 1, (z ′, n + j + 1)→ω Zd × {n + k − 1}
}

with the smallest index in ω̃(y , n + j)
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Discrete time contact process and oriented percolation Central proof ingredient: Regeneration construction

Local vs global construction of the walk

γ
(x ,n)
k (k) = endpoint of the local k-step construction

(x , n)

ω̃(x,n)[1]ω̃(x,n)[2]

k = 1 k = 2 k = 3 k = 4

For (x , n) ∈ C, γ(x ,n)∞ (j) := lim
k→∞

γ
(x ,n)
k (j) exists ∀ j

and γ
(x ,n)
k (k) = γ

(x ,n)
∞ (k) if ξn+k

(
γ
(x ,n)
k (k)

)
= 1.

On B0 := {(0, 0) ∈ C},

Xk := γ(0,0)∞ (k), k = 0, 1, 2, . . .

is (a version of) the directed random walk on C,

and Xk = γ
(0,0)
k (k) if ξ

(
γ
(0,0)
k (k), k

)
= 1.
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Discrete time contact process and oriented percolation Central proof ingredient: Regeneration construction

Regeneration times

T0

T1

T2

T3

T6

T0 := 0, Y0 := 0,

T1 := min
{

k > 0 : ξ
(
γ
(0,0)
k (k), k

)
= 1
}

, Y1 := γ
(0,0)
T1

(T1) = XT1 ,

then T2 := T1 + min
{

k > 0 : ξ
(
γ
(Y1,T1)
k (k),T1 + k

)
= 1
}

,

Y2 := γ
(Y1,T1)
T2−T1

(T2 − T1) = XT2 , etc.
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Discrete time contact process and oriented percolation Central proof ingredient: Regeneration construction(
(Yi − Yi−1,Ti − Ti−1)

)
i≥1 are i.i.d. under P(· | B0), Y1 is symmetrically

distributed. There exist C , c ∈ (0,∞), such that

P(||Y1|| > n | B0), P(T1 > n | B0) ≤ Ce−cn for n ∈ N.

T0

T1

T2

T3
T6

Tail bounds use the fact that finite clusters are small,

i.i.d. property follows from the fact that the local path construction uses
disjoint time-slices.

Randomised version of Kuczek’s (1989) construction, morally a discrete
time analogue of Neuhauser (1992)

A.s. CLT uses variance estimates obtained from joint regeneration for two
independent copies (Xn), (X ′n) on the same ξ.
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Discrete time contact process and oriented percolation Central proof ingredient: Regeneration construction

A “meta-theorem”

“Everything”1 that is true for the neutral multi-type voter model is also
true for the neutral multi-type contact process (and presumably for more

general locally regulated models).

Some “rigorous instances” (S. Steiber 2017)

Start two walks on the cluster in x1 6= x2 which coalesce when
meeting (condition on ξ(x1, 0) = ξ(x2, 0) = 1),
let Tmerge = time until coalescence

Tmerge <∞ a.s. in d = 1, 2, P(Tmerge =∞) > 0 in d ≥ 3
(in particular, no neutral multi-type equilibria in d ≤ 2)

In d = 1, P(Tmerge ≥ n) � |x1 − x2|√
n

,

start coalescing directed random walks on every site with ξ(x , n) = 1
and re-scale this set of paths diffusively:

Obtain Brownian web as scaling limit.

1with a suitable interpretation of “everything”
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Logistic branching random walks and ‘relatives’
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Logistic branching random walks and ‘relatives’

Logistic branching random walks

Particles ‘live’ in Zd in discrete generations,
ηn(x) = # particles at x ∈ Zd in generation n.

Given ηn,

each particle at x has Poisson
((

m −
∑

z λz−xηn(z)
)+)

offspring,
m > 1, λz ≥ 0, λ0 > 0, symmetric, finite range.

(Interpretation as local competition:
Ind. at z reduces average reproductive success of focal ind. at x by λz−x)

Children take an independent random walk step to y with probability py−x ,
pxy = py−x symmetric, aperiodic finite range random walk kernel on Zd .

Given ηn,

ηn+1(y) ∼ Poi
(∑

x

py−xηn(x)
(
m −

∑
z λz−xηn(z)

)+)
, independent
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Logistic branching random walks and ‘relatives’

Remarks

ηn+1(y) ∼ Poi
(∑

x
py−xηn(x)

(
m −

∑
z λz−xηn(z)

)+)
, independent

For λ ≡ 0, (ηn) is a branching random walk.

(ηn) is a spatial population model with local density-dependent
feedback:
Offspring distribution supercritical when there are few neighbours,
subcritical when there are many neighbours

System is in general not attractive.

Conditioning2 on ηn(·) ≡ N for some N ∈ N (“effective local
population size”) yields a discrete version of the stepping stone model

Form of competetion kernel and Poisson offspring law are convenient
but could be more general.

2and considering types and/or ancestral relationships
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Outline

1 Introduction

2 Discrete time contact process and oriented percolation
Ancestral lines, RWDRE and a CLT
Central proof ingredient: Regeneration construction

3 Logistic branching random walks and ‘relatives’
Long-time behaviour: Coupling and convergence
Ancestral lineages in the spatial logistic model

31/42



Logistic branching random walks and ‘relatives’ Long-time behaviour: Coupling and convergence

Survival and complete convergence

Theorem (B. & Depperschmidt, 2007).

Assume m ∈ (1, 3), 0 < λ0 � 1, λz � λ0 for z 6= 0.

(ηn) survives for all time globally and locally with positive probability for
any non-trivial initial condition η0. Given survival, ηn converges in
distribution to its unique non-trivial equilibrium.

Proof uses

corresponding deterministic system

ζn+1(y) =
∑

x
py−xζn(x)

(
m −

∑
z λz−xζn(z)

)+
has unique (and globally attracting) non-triv. fixed point

strong coupling properties of η

coarse-graining and comparison with directed percolation
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Logistic branching random walks and ‘relatives’ Long-time behaviour: Coupling and convergence

Remarks

Local extinction for m ≤ 1 (domination by subcritical branching r.w.)

Restriction to m < 3 in result “inherited” from logistic iteration
wn+1 = mwn(1− wn)

Survival can be proved also for m ∈ [3, 4) with analogous arguments,
convergence not
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Logistic branching random walks and ‘relatives’ Long-time behaviour: Coupling and convergence

Coupling: An essential proof ingredient
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m = 1.5, p = (1/3, 1/3, 1/3), λ = (0.01, 0.02, 0.01)

Starting from any two initial conditions η0, η′0, copies (ηn), (η′n) can be
coupled such that if both survive, ηn(x) = η′n(x) in a space-time cone.
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Logistic branching random walks and ‘relatives’ Long-time behaviour: Coupling and convergence

Coupling: An essential proof ingredient
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Logistic branching random walks and ‘relatives’ Ancestral lineages in the spatial logistic model

Dynamics of an ancestral line

Given stationary (ηstatn (x), n ∈ Z, x ∈ Zd), cond. on ηstat0 (0) > 0 (and
“enrich” suitably to allow bookkeeping of genealogical relationships),
sample an individual from space-time origin (0, 0) (uniformly)

Let Xn = position of her ancestor n generations ago:

Given ηstat and Xn = x , Xn+1 = y w. prob.

px−yη
stat
−n−1(y)

(
m −

∑
z λz−yη

stat
−n−1(z)

)+∑
y ′ px−y ′η

stat
−n−1(y ′)

(
m −

∑
z λz−y ′η

stat
−n−1(z)

)+
(note: a Poisson vector conditioned on its total sum is multinomial)

Question:
(Xn) is a random walk in a – relatively complicated – random
environment. Is it similar to an ordinary random walk when viewed over
large enough space-time scales?

Note: (Xn) is close to ordinary rw in regions where relative variation of
η−n−1(x) is small.
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stat
−n−1(z)

)+∑
y ′ px−y ′η

stat
−n−1(y ′)

(
m −

∑
z λz−y ′η

stat
−n−1(z)

)+
(note: a Poisson vector conditioned on its total sum is multinomial)

Question:
(Xn) is a random walk in a – relatively complicated – random
environment. Is it similar to an ordinary random walk when viewed over
large enough space-time scales?

Note: (Xn) is close to ordinary rw in regions where relative variation of
η−n−1(x) is small.
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Large scale behaviour of an ancestral line

Xn = position of ancestor n generations ago of an individual sampled
today at origin in equilibrium

Theorem (LLN and (averaged) CLT, B., Černý, Depperschmidt 2016).

If m ∈ (1, 3), 0 < λ0 � 1, λz � λ0 for z 6= 0,

P
(1

n
Xn → 0

∣∣∣ η0(0) 6= 0
)

= 1 and E
[
f
(

1√
n

Xn

) ∣∣∣ η0(0) 6= 0
]
−→
n→∞

E
[
f (Z )

]
for f ∈ Cb(Rd), where Z is a d-dimensional normal rv.

The proof uses a regeneration construction
(and coarse-graining and coupling, in particular with directed percolation):

Regeneration times 0 = T0 < T1 < T2 < · · · , express XTk
= Y1 + · · ·+ Yk

with Yi := XTi
− XTi−1

and (Yi ,Ti − Ti−1)i≥1 ‘almost i.i.d.’
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Spatial population models (ηn) and ancestral lineages (Xk):
Abstract conditions

Local Markov structure: ηn+1(x) is a function of ηn in a finite window
around x plus ‘local randomness’

Given η, (Xk)k=0,1,... is a Markov chain, P(Xk+1 = · | η,Xk = x)
depends on η−k , η−k−1 in a finite window around x
[note reversal of time between η and X ]

Good configurations and coupling propagation for η on coarse-grained
scale LspaceZd × LtimeZ: With high probability,

‘good’ blocks make neighbours good in Ltime steps and

η’s with two different good local initial conditions become locally
identical after Ltime steps

On good η blocks, the law of X is ‘well behaved’: close to a
non-disorded symmetric finite range reference walk

Symmetry in distribution

39/42



Logistic branching random walks and ‘relatives’ Ancestral lineages in the spatial logistic model

Spatial population models (ηn) and ancestral lineages (Xk):
Abstract conditions

Local Markov structure: ηn+1(x) is a function of ηn in a finite window
around x plus ‘local randomness’

Given η, (Xk)k=0,1,... is a Markov chain, P(Xk+1 = · | η,Xk = x)
depends on η−k , η−k−1 in a finite window around x
[note reversal of time between η and X ]

Good configurations and coupling propagation for η on coarse-grained
scale LspaceZd × LtimeZ: With high probability,

‘good’ blocks make neighbours good in Ltime steps and

η’s with two different good local initial conditions become locally
identical after Ltime steps

On good η blocks, the law of X is ‘well behaved’: close to a
non-disorded symmetric finite range reference walk

Symmetry in distribution

39/42



Logistic branching random walks and ‘relatives’ Ancestral lineages in the spatial logistic model

Spatial population models (ηn) and ancestral lineages (Xk):
Abstract conditions

Local Markov structure: ηn+1(x) is a function of ηn in a finite window
around x plus ‘local randomness’

Given η, (Xk)k=0,1,... is a Markov chain, P(Xk+1 = · | η,Xk = x)
depends on η−k , η−k−1 in a finite window around x
[note reversal of time between η and X ]

Good configurations and coupling propagation for η on coarse-grained
scale LspaceZd × LtimeZ: With high probability,

‘good’ blocks make neighbours good in Ltime steps and

η’s with two different good local initial conditions become locally
identical after Ltime steps

On good η blocks, the law of X is ‘well behaved’: close to a
non-disorded symmetric finite range reference walk

Symmetry in distribution

39/42



Logistic branching random walks and ‘relatives’ Ancestral lineages in the spatial logistic model

Idea for constructing regeneration times

Find time points along the path such that:

a cone (with fixed suitable base diameter

and slope)

centred at the current space-time
position of the walk covers the path
and everything it has explored so far
(since the last regeneration)

configuration ηstat at the base of the
cone is “good”

“strong” coupling for ηstat occurs inside
the cone

t0

t1

t2

t3

Then, the conditional law of future path increments is completely
determined by the configuration ηstat at the base of the cone
(= a finite window around the current position)
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Remarks

Technique is robust (applies to many spatial population models in
“high density” regime) but current result “conceptual” rather than
practical

Work in progress (so far in d ≥ 3):
A “joint regeneration” construction allows to analyse
samples of size 2 (or even more) on large space-time scales
(as for the contact process)

and to derive an a.s. version of the CLT

Meta-theorem (again): “Everything”3 that is true for the neutral
multi-type voter model is also true for the neutral multi-type spatial
logistic model.

3with a suitable interpretation of “everything”
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More details can be found in

M. B., A. Depperschmidt, Survival and complete convergence for a spatial
branching system with local regulation, Ann. Appl. Probab. 17 (2007),
1777–1807

M. B., J. Černý, A. Depperschmidt, N. Gantert, Directed random walk on
an oriented percolation cluster, Electron. J. Probab. 18 (2013), Article 80

M. B., J. Černý, A. Depperschmidt, Random walks in dynamic random
environments and ancestry under local population regulation, Electron. J.
Probab. 21 (2016), Article 38

M. B., R. Sun, Low-dimensional lonely branching random walks die out,
arXiv:1708.06377

Thank you for your attention!
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M. B., J. Černý, A. Depperschmidt, N. Gantert, Directed random walk on
an oriented percolation cluster, Electron. J. Probab. 18 (2013), Article 80
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