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The nearest-neighbor contact process on Z

Let N = {−1, 1} be the set of (nearest) neighbours of 0. Then y ∈ Z is called a
neighbour of x ∈ Z if y − x ∈ N . The dynamics of the process (ξt)t≥0 can be
described as follows:

1 Particles die at rate 1;

2 At a free/empty position x ∈ Z a particle gets born at rate λ × the number
of neighbouring sites that are occupied (λ ∈ (0,∞)) /
each particle gives birth to a new particle at rate λ× |N | and places the
particle at a uniformly chosen neighboring site, if it is empty.

Remark: We can consider (ξt)t≥0 as either

• a {0, 1}Z-valued process, where {x ∈ Z : ξt(x) = 1} denotes the set of
occupied sites, or

• as a set-valued process, where ξt ⊂ Z denotes the set of occupied sites.
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Graphical representation for N = {−1, 1}
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1 Drop triangles along each line at rate 1;

2 draw arrows from one fixed line to a neighboring (fixed) line at rate λ.
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Useful properties (under the coupling based on the graphical
representation): Let ξAt denote the process starting with initial condition
ξA0 = A. Then

• Set-monotonicity: If A ⊆ B, then ξAt ⊆ ξBt .

• Additivity: For all A,B ⊆ Z, ξAt ∪ ξBt = ξA∪Bt .
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• λ-monotonicity: If λ1 ≤ λ2, then ξt(λ1) ⊆ ξt(λ2).

Idea: Independently add arrows at rate λ2 − λ1 =: ∆λ.
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• Self-duality:

P(ξAt ∩ B 6= ∅) = P(A ∩ ξ̂Bt 6= ∅) = P(A ∩ ξBt 6= ∅) for all A,B ⊆ Z, t ≥ 0.

Example: A = {0} (upward) and B = Z (downward; turn direction of arrows).
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Conclusion: P(ξ
{0}
· survives globally) = lim

t→∞
P(ξ
{0}
t ∩ Z 6= ∅)

= lim
t→∞

P({0} ∩ ξZt 6= ∅) = P(ξZ· survives locally ”at zero”).
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Remark/Definition
Let ξZt be the process that starts in ξ0 = Z. Then ξZt ⇒ ξZ∞ for t →∞.
ξZ∞ has a translation invariant distribution µ (upper invariant measure) that
satisfies

µ(· ∩ B 6= ∅) = P(ξZ∞ ∩ B 6= ∅) = P(τB =∞),

where τB := inf{t ≥ 0; ξBt ≡ ∅} is the extinction time of the process starting with
occupied sites B.

Set λc := inf{λ ≥ 0;µ({∅}) < 1}
= inf{λ ≥ 0;P(ξ

{0}
· survives globally) > 0}.

Theorem (Harris’ cvg.thm. for additive proc.s, [D95] (R. Durrett), p. 133)

For ξ0 translation invariant with P(ξ0 ≡ ∅) = 0, ξξ0
t ⇒ µ for t →∞.

Theorem (Complete convergence theorem, [?] (T.M. Liggett), p. 284)
Let λ > λc . For any arbitrary initial distribution ξ0,

ξt ⇒ P(τ ξ0 <∞) · δ∅ + P(τ ξ0 =∞) · µ for t →∞.
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Edge speeds
Definition (Edge processes)
Let `At := inf{x : x ∈ ξAt } and rAt := sup{x : x ∈ ξAt } for A ⊂ Z arbitrarily fixed.
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• `{0}t = `
[0,∞)∩Z
t and r

{0}
t = r

(−∞,0]∩Z
t on {τ{0} > t}.
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A note on the long-range case

−4

v
−3

v
−2

v
−1

v
0

v
1

s
2

s
3

s
4

s
5

s-

-

-

�

�

�

N
-

-

�

-

-
-

-

• `{0}t ≥`[0,∞)∩Z
t and r

{0}
t ≤r (−∞,0]∩Z

t on {τ{0} > t}.
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In [D80, Theorem 1.4 and Section 4], Durrett shows for the nearest-neigbor
contact process that

− lim
t→∞

l
{0}
t

t
= lim

t→∞

r
{0}
t

t
= α

{
> 0, if τ{0} =∞,
< 0, if τ{0} <∞. a.s.

Note: On {τ{0} =∞}, limt→∞
r

(−∞,0]∩Z
t

t = limt→∞
r
{0}
t

t = α.

Useful property of r
(−∞,0]∩Z
t :

Subadditivity in expectation: Let αt := E
[
r

(−∞,0]∩Z
t

]
. Then

αt+u < αt + αu, t, u > 0

and
lim

T→∞

αT

T
= inf

T>0

αT

T
exists (and = α = const.).

Conclusion:

λc = sup{λ ≥ 0;α(λ) < 0} = sup{λ : α(λ) ≤ 0}. (1)
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Idea of the proof of complete convergence
(cf. [DG83] R. Durrett and D. Griffeath)
Let I0 be a ”big enough” interval with all sites occupied, so that the probability of
survival is high.
A ”successful path” from left to right starts in I0, goes through I1 and I2, while
never leaving the block R.

space

time

b b

b b

I2

I1

I0

R

Now use comparison with 1-dependent oriented site-percolation with parameter
close to 1.
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Main part of the proof of (1)
Durrett proves in [D80, Section 4]: If λ > λc , then α(λ) ≥ 0 (easy) and for T big

enough, (αT

T =
E
[
r

(−∞,0]∩Z
T

]
T

T→∞→ α
!
> 0)

αT (λ+ δ)− αT (λ) ≥ δT for all δ ≥ 0.

Main ideas/steps of the proof.

1 For all B infinite subsets of (−∞, 0] ∩ Z and t ≥ 0,

E
[
r
B∪{1}
t − rBt

]
≥ E

[
r

(−∞,1]∩Z
t − r

(−∞,0]∩Z
t

]
= 1.

. l.h.s.: use additivity, i.e. ξA∪Bt = ξAt ∪ ξBt ⇒ rA∪Bt = max{rAt , rBt };

. r.h.s.: use translation-invariance.

2 Use λ-monotonicity for λc < λ1 < λ2 = λ1 + ∆λ to show: There exists a.s.
a finite (random) point in time τ s.t.

r (−∞,0]∩Z
τ (λ2) ≥ r (−∞,0]∩Z

τ (λ1) + 1. (2)

3 Split [λ, λ+ δ] in O(T ) subintervals of length ∆λ = O(1/T ).

On each subinterval, (2) succeeds with probability ∆λ = O(1/T ) on [0, 1]
and with O(1) on [0,T ] by a geometric-type series argument.

Sandra Kliem (Univ. Duisburg-Essen) Contact process and KPP-equation with noise 06. Sept., 2017 14 / 29



A summary

1 Let λ > λc .

2 Self-duality;

3 P(ξZ∞ ∩ B 6= ∅) = P(τB =∞).

4 Harris’ convergence theorem.

5 Let αt := E
[
r

(−∞,0]∩Z
t

]
. Then

• αt+u < αt + αu, t, u > 0 and
• limT→∞ αT/T = infT>0 αT/T exists (and =: α = const.)

6 αT (λ+ δ)− αT (λ) ≥ δT for all δ ≥ 0.

. E
[
r
B∪{1}
t − rBt

]
≥ E

[
r

(−∞,1]∩Z
t − r

(−∈λ1fty ,0]∩Z
t

]
= 1,

. r
(−∞,0]∩Z
τ (λ2) ≥ r

(−∞,0]∩Z
τ (λ1) + 1.

7 limT→∞ r
(−∞,0]∩Z
T /T = α a.s.

8 On {τ{0} =∞}, r (−∞,0]∩Z
t = r

{0}
t .

9 Complete convergence theorem.
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The KPP-equation with noise
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The KPP equation with noise
We investigate solutions u(t, x) = ut(x) = u

(u0)
t (x) to the stochastic

partial differential equation (SPDE)

∂tu = ∂xxu + θu − u2 +
√
udW , t > 0, x ∈ R, θ > 0 (3)

u(0, x) = u0(x) ≥ 0.

. u  particle density,

. ∂uxx  particles move in space (R1) as independent Brownian
motions,

. θu  linear mass creation,

. −u2  competition between particles ”if they meet” / death due to
overcrowding,

.
√
udW  standard deviation of particle branching (W a white noise).

Remark
Solutions to (3) arise as limits of scaled long-range contact processes (cf.
[MT95] (C. Mueller and R. Tribe, 1995)).
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Existing Results

Choose C+
tem as type-stace, that is, the set of non-negative continuous functions

with slower than exponential growth.

Theorem ([T96] (R. Tribe), Theorem 2.2)

(a) For all f ∈ C+
tem there exists a solution that starts in f .

(b) All solutions have the same law Pf and the strong Markov property holds.
The map f 7→ Pf is continuous.

Definition
For u0 ∈ C+

tem, let
R(t) := sup{x ∈ R : ut(x) > 0} and
L(t) := inf{x ∈ R : ut(x) > 0} with inf ∅ = sup ∅ := −∞.

ut

R(t)L(t)Remark
One can show: If R(0) <∞, then R(t) <∞ for all t ≥ 0 a.s. A similar
statement holds for L(t).

Sandra Kliem (Univ. Duisburg-Essen) Contact process and KPP-equation with noise 06. Sept., 2017 18 / 29



The critical value θc

Definition
We say ”u survives” if τ := inf{t ≥ 0 : ut ≡ 0} =∞.

Theorem ([MT94] (C. Mueller and R. Tribe), Theorem 1)
Let u(t, x) be a solution to

∂u

∂t
= ∆u + θu − u2 +

√
uẆ , t > 0, x ∈ R, θ > 0,

u(0, x) = u0(x) ≥ 0

with u0 ∈ C+
c . Then there exists a constant θc > 0, independent of u0, such that:

(a) If θ < θc , then Pu0 (u survives) = Pu0 (τ =∞) = 0.

(b) If θ > θc , then Pu0 (u survives) = Pu0 (τ =∞) > 0.

From now onwards, let θ > θc .
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Longterm Behavior for arbitrary initial conditions?

Open Question: Complete convergence?

ut1
ut2

ut3

t1 < t2 < t3

x

ut(x)

ut1

ut2

ut3

t1 < t2 < t3

x

ut(x)

ut1
ut2

ut3

t1 < t2 < t3

x

ut(x)
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Analogue to Harris’ convergence theorem for additive
particle systems

Self-Duality
Let u, v be independent solutions to (3) with initial conditions u0, v0 ∈ C+

tem, then
we have for all 0 ≤ s ≤ t,

Eu0

[
e−2〈ut ,v0〉

]
= Eu0 ⊗ Ev0

[
e−2〈us ,vt−s〉

]
= Ev0

[
e−2〈u0,vt〉

]
,

where 〈f , g〉 :=
∫
R f (x)g(x)dx .

Theorem ([HT04] (P. Horridge and R. Tribe), Theorem 1)
Let θ > θc . If ν ∈ P(C+

tem) only assigns mass to functions that are ”uniformly
distributed in space”, then

L(u
(ν)
t )⇒ µ for t →∞.

The limiting measure µ ∈ P(C+
tem) is unique and

• translation invariant (in space), stationary, µ(f 6≡ 0) = 1

• and has as Laplace-functional

E
[
e−2〈µ,g〉

]
:=

∫
e−2〈f ,g〉µ(df ) = Pg (τ <∞), g ∈ C+

c .

Sandra Kliem (Univ. Duisburg-Essen) Contact process and KPP-equation with noise 06. Sept., 2017 21 / 29



A summary

1 Let λ > λc .

2 Self-duality;

3 P(ξZ∞ ∩ B 6= ∅) = P(τB =∞).

4 Harris’ convergence theorem.

5 Let αt := E
[
r

(−∞,0]∩Z
t

]
. Then

• αt+u < αt + αu, t, u > 0 and
• limT→∞ αT/T = infT>0 αT/T exists (and =: α = const.)

6 αT (λ+ δ)− αT (λ) ≥ δT for all δ ≥ 0.

. E
[
r
B∪{1}
t − rBt

]
≥ E

[
r

(−∞,1]∩Z
t − r

(−∞,0]∩Z
t

]
= 1,

. r
(−∞,0]∩Z
τ (λ2) ≥ r

(−∞,0]∩Z
τ (λ1) + 1.

7 limT→∞ r
(−∞,0]∩Z
T /T = α a.s.

8 On {τ{0} =∞}, r (−∞,0]∩Z
t = r

{0}
t .

9 Complete convergence theorem.

Sandra Kliem (Univ. Duisburg-Essen) Contact process and KPP-equation with noise 06. Sept., 2017 22 / 29



Analogue to ξ
(−∞,0]∩Z
t and ξZt (cf. [K17] (S. Kliem))

Let ψn ↑ ”∞” · 1(−∞,0), then for t > 0,

L(u
(ψN )
t )⇒ L(u∗,lt ) ∈ P(C+

tem) for N →∞.
Let ψn ↑ ”∞”, then for t > 0,

L(u
(ψN )
t )⇒ L(u∗t ) ∈ P(C+

tem) for N →∞.

u
(ψ1)
0

u
(g0)
0 = g0

u
(g0)
t

x

u
(ψN )
0

u
(ψ1)
t

µ∗,l
t

u
(ψN )
t

+∞

R0(u
(g0)
t )

Note: L(u∗t )⇒ µ for t →∞ (µ, cf. Harris cvg. thm. [HT04]).
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A summary
1 Let λ > λc .
2 Self-duality;
3 P(ξZ∞ ∩ B 6= ∅) = P(τB =∞).
4 Harris’ convergence theorem.
5 Let αt := E

[
r

(−∞,0]∩Z
t

]
. Then

• αt+u < αt + αu, t, u > 0 and
• limT→∞ αT/T = infT>0 αT/T exists (and =: α = const.)

Becomes: Let αt := E
[
u∗,lt

]
. Then

• αt+u ≤ αt + αu, t, u > 0 and
• limT→∞ αT/T = infT>0 αT/T exists (and =: α = const.)

6 αT (λ+ δ)− αT (λ) ≥ δT for all δ ≥ 0.

. E
[
r
B∪{1}
t − rBt

]
≥ E

[
r

(−∞,1]∩Z
t − r

(−∞,0]∩Z
t

]
= 1,

. r
(−∞,0]∩Z
τ (λ2) ≥ r

(−∞,0]∩Z
τ (λ2) + 1.

7 limT→∞ r
(−∞,0]∩Z
T /T = α a.s.

8 On {τ{0} =∞}, r (−∞,0]∩Z
t = r

{0}
t .

9 Complete convergence theorem.
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Travelling wave solutions
Let

νT : the law of
1

T

∫ T

0

ut(·+ R(s))ds under Pu0 ,

where u0 ∈ C+
tem arbitrary.

Definition
A travelling wave solution to (3), is a solution with

(i) R(u(t)) ∈ (−∞,∞) for all t ≥ 0,

(ii) u(t, ·+ R(u(t))) is a (temporarily) stationary process.

ut

R(t)

ut(·+R(t))

x

t1 = 0 t2 t3

1 For f0 Heavyside initial data (and R(t) replaced by R1(t) = log(
∫
exut(x)dx)), the

sequence (νT )T∈N is tight. Every subsequential limit yields a travelling wave
solution with ”tip at zero” a.s. (cf. [T96]).

2 For g0 ∈ C+
c \{0}, the same holds true (conditional on survival) (cf. [K17]).
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A summary
1 Let λ > λc .
2 Self-duality;
3 P(ξZ∞ ∩ B 6= ∅) = P(τB =∞).
4 Harris’ convergence theorem.
5 Becomes: Let αt := E

[
u∗,lt

]
. Then

• αt+u ≤ αt + αu, t, u > 0 and
• limT→∞ αT/T = infT>0 αT/T exists (and =: α = const.)

6 αT (λ+ δ)− αT (λ) ≥ δT for all δ ≥ 0.

WiP: Let βT (θ) := βT := 2
T

∫ T/2
0 E

[
R(u∗,lT/2+s)

]
ds. Then

βT (θ2)− βT (θ1) ≥ C (θ2 − θ1)T

for all θ ≤ θ1 < θ2 ≤ θ and T big enough.
Conclusion: For all θ > θc , limT→∞ αT/T > 0.

7 limT→∞ r
(−∞,0]∩Z
T /T = α a.s.

8 On {τ{0} =∞}, r (−∞,0]∩Z
t = r

{0}
t .

9 Complete convergence theorem.
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Open Questions

Note: θc is also the critical value for the existence of a nontrivial stationary
distribution.

Open Questions:

1 Travelling wave speed A = A(ν) > 0? Deterministic? Dependent on ν?

2 Does the limiting speed of an arbitrary solution to (3),
A(u0) := limt→ R(ut)/t, u0 ∈ C+

tem exist?

3 A(ν) = A(g0), g0 ∈ C+
c \{0}?

4 Suppose A(ν) > 0 with positive probability for ν. Does that imply
A(g0) > 0 w.p.p. for g0 with compact support?
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Thank You
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