The one-dimensional contact process and the KPP-equation with noise

Sandra Kliem

Bath - Spatial models in population genetics - 06. Sept., 2017

The one-dimensional contact process

The nearest-neighbor contact process on $\ensuremath{\mathbb{Z}}$

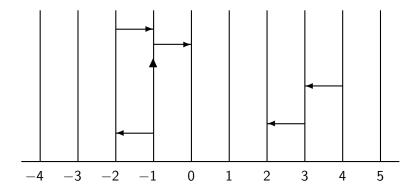
Let $\mathcal{N} = \{-1, 1\}$ be the set of (nearest) neighbours of 0. Then $y \in \mathbb{Z}$ is called a neighbour of $x \in \mathbb{Z}$ if $y - x \in \mathcal{N}$. The dynamics of the process $(\xi_t)_{t \ge 0}$ can be described as follows:

- Particles die at rate 1;
- At a free/empty position x ∈ Z a particle gets born at rate λ × the number of neighbouring sites that are occupied (λ ∈ (0,∞)) / each particle gives birth to a new particle at rate λ × |N| and places the particle at a uniformly chosen neighboring site, if it is empty.

Remark: We can consider $(\xi_t)_{t>0}$ as either

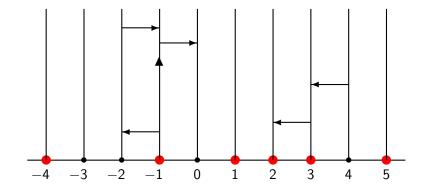
- a {0,1}^ℤ-valued process, where {x ∈ ℤ : ξ_t(x) = 1} denotes the set of occupied sites, or
- as a set-valued process, where $\xi_t \subset \mathbb{Z}$ denotes the set of occupied sites.

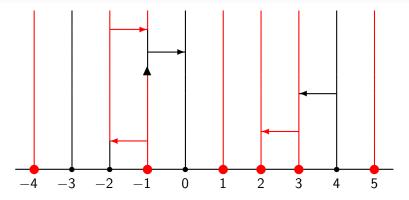
Graphical representation for $\mathcal{N} = \{-1,1\}$



Drop triangles along each line at rate 1;

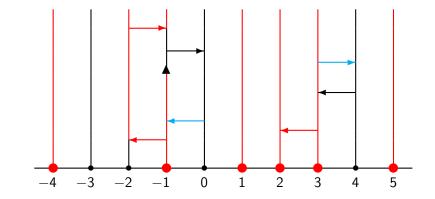
2 draw arrows from one fixed line to a neighboring (fixed) line at rate λ .





Useful properties (under the coupling based on the graphical representation): Let ξ_t^A denote the process starting with initial condition $\xi_0^A = A$. Then

- Set-monotonicity: If $A \subseteq B$, then $\xi_t^A \subseteq \xi_t^B$.
- Additivity: For all $A, B \subseteq \mathbb{Z}, \xi_t^A \cup \xi_t^B = \xi_t^{A \cup B}$.



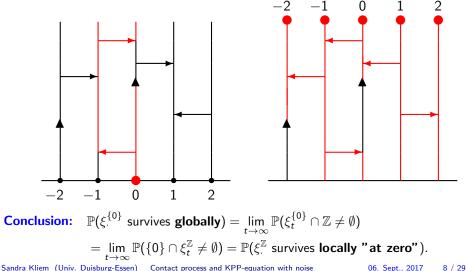
• λ -monotonicity: If $\lambda_1 \leq \lambda_2$, then $\xi_t(\lambda_1) \subseteq \xi_t(\lambda_2)$.

Idea: Independently add arrows at rate $\lambda_2 - \lambda_1 =: \Delta \lambda$.

• Self-duality:

$$\mathbb{P}(\xi^A_t \cap B \neq \emptyset) = \mathbb{P}(A \cap \hat{\xi}^B_t \neq \emptyset) = \mathbb{P}(A \cap \xi^B_t \neq \emptyset) \quad \text{ for all } A, B \subseteq \mathbb{Z}, t \ge 0.$$

Example: $A = \{0\}$ (upward) and $B = \mathbb{Z}$ (downward; turn direction of arrows).



Remark/Definition

Let $\xi_t^{\mathbb{Z}}$ be the process that starts in $\xi_0 = \mathbb{Z}$. Then $\xi_t^{\mathbb{Z}} \Rightarrow \xi_{\infty}^{\mathbb{Z}}$ for $t \to \infty$. $\xi_{\infty}^{\mathbb{Z}}$ has a translation invariant distribution μ (upper invariant measure) that satisfies

$$\mu(\cdot \cap B \neq \emptyset) = \mathbb{P}(\xi_{\infty}^{\mathbb{Z}} \cap B \neq \emptyset) = \mathbb{P}(\tau^{B} = \infty),$$

where $\tau^{B} := \inf\{t \ge 0; \xi_{t}^{B} \equiv \emptyset\}$ is the extinction time of the process starting with occupied sites *B*.

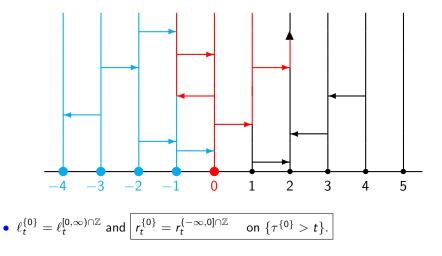
$$\begin{split} \text{Set} \qquad & \lambda_{\mathbf{c}} := \inf\{\lambda \geq 0; \mu(\{\emptyset\}) < 1\} \\ & = \inf\{\lambda \geq 0; \mathbb{P}(\xi^{\{0\}} \text{ survives } \textbf{globally}) > 0\}. \end{split}$$

Theorem (Harris' cvg.thm. for additive proc.s, [D95] (R. Durrett), p. 133) For ξ_0 translation invariant with $\mathbb{P}(\xi_0 \equiv \emptyset) = 0$, $\xi_t^{\xi_0} \Rightarrow \mu$ for $t \to \infty$.

Theorem (Complete convergence theorem, [?] (T.M. Liggett), p. 284) Let $\lambda > \lambda_c$. For any arbitrary initial distribution ξ_0 ,

$$\xi_t \Rightarrow \mathbb{P}(\tau^{\xi_0} < \infty) \cdot \delta_{\emptyset} + \mathbb{P}(\tau^{\xi_0} = \infty) \cdot \mu \quad \text{ for } t \to \infty.$$

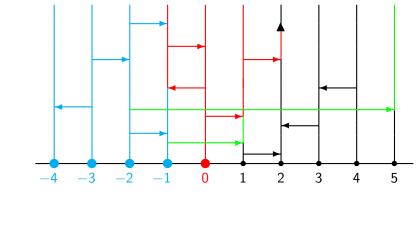
Edge speedsDefinition (Edge processes)Let $\ell_t^A := \inf\{x : x \in \xi_t^A\}$ and $r_t^A := \sup\{x : x \in \xi_t^A\}$ for $A \subset \mathbb{Z}$ arbitrarily fixed.



Sandra Kliem (Univ. Duisburg-Essen)

Contact process and KPP-equation with noise

A note on the long-range case



• $\ell_t^{\{0\}} \ge \ell_t^{[0,\infty) \cap \mathbb{Z}}$ and $r_t^{\{0\}} \le r_t^{(-\infty,0] \cap \mathbb{Z}}$ on $\{\tau^{\{0\}} > t\}$.

Sandra Kliem (Univ. Duisburg-Essen) Contact process and KPP-equation with noise 06. Sept., 2017

11 / 29

In [D80, Theorem 1.4 and Section 4], Durrett shows for the *nearest-neigbor* contact process that

$$-\lim_{t\to\infty}\frac{l_t^{\{0\}}}{t} = \lim_{t\to\infty}\frac{r_t^{\{0\}}}{t} = \alpha \begin{cases} >0, & \text{if } \tau^{\{0\}} = \infty, \\ <0, & \text{if } \tau^{\{0\}} < \infty. \end{cases} \text{ a.s.}$$

Note: On
$$\{\tau^{\{0\}} = \infty\}$$
, $\lim_{t \to \infty} \frac{r_t^{(-\infty,0] \cap \mathbb{Z}}}{t} = \lim_{t \to \infty} \frac{r_t^{\{0\}}}{t} = \alpha$.

Useful property of $r_t^{(-\infty,0]\cap\mathbb{Z}}$:

Subadditivity in expectation: Let $\alpha_t := \mathbb{E}[r_t^{(-\infty,0]\cap\mathbb{Z}}]$. Then

$$\alpha_{t+u} < \alpha_t + \alpha_u, \quad t, u > 0$$

and

$$\lim_{T \to \infty} \frac{\alpha_T}{T} = \inf_{T > 0} \frac{\alpha_T}{T} \text{ exists (and = } \alpha = \text{ const.)}.$$

Conclusion:

$$\lambda_{c} = \sup\{\lambda \ge 0; \alpha(\lambda) < 0\} = \sup\{\lambda : \alpha(\lambda) \le 0\}.$$
(1)

Sandra Kliem (Univ. Duisburg-Essen) Contact process and KPP-equation with noise

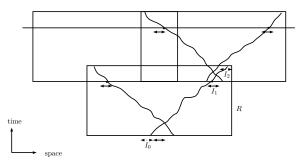
06. Sept., 2017 12 / 29

Idea of the proof of complete convergence

(cf. [DG83] R. Durrett and D. Griffeath)

Let I_0 be a "big enough" interval with all sites occupied, so that the probability of survival is high.

A "successful path" from left to right starts in I_0 , goes through I_1 and I_2 , while never leaving the block R.



Now use comparison with 1-dependent oriented site-percolation with parameter close to 1.

Main part of the proof of (1)

Durrett proves in [D80, Section 4]: If $\lambda > \lambda_c$, then $\alpha(\lambda) \ge 0$ (easy) and for T big enough, $\left(\frac{\alpha_T}{T} = \frac{\mathbb{E}\left[r_T^{(-\infty,0]\cap\mathbb{Z}}\right]}{T} \xrightarrow{T \to \infty} \alpha \stackrel{!}{>} 0\right)$

$$\alpha_{\mathcal{T}}(\lambda + \delta) - \alpha_{\mathcal{T}}(\lambda) \ge \delta \mathcal{T}$$
 for all $\delta \ge 0$.

Main ideas/steps of the proof.

1 For all *B* infinite subsets of $(-\infty, 0] \cap \mathbb{Z}$ and $t \ge 0$,

$$\mathbb{E}\left[r_t^{B\cup\{1\}} - r_t^B\right] \ge \mathbb{E}\left[r_t^{(-\infty,1]\cap\mathbb{Z}} - r_t^{(-\infty,0]\cap\mathbb{Z}}\right] = 1.$$

> l.h.s.: use additivity, i.e. $\xi_t^{A\cup B} = \xi_t^A \cup \xi_t^B \Rightarrow r_t^{A\cup B} = \max\{r_t^A, r_t^B\};$

- ▷ r.h.s.: use translation-invariance.
- **2** Use λ -monotonicity for $\lambda_c < \lambda_1 < \lambda_2 = \lambda_1 + \Delta \lambda$ to show: There exists a.s. a finite (random) point in time τ s.t.

$$r_{\tau}^{(-\infty,0]\cap\mathbb{Z}}(\lambda_2) \ge r_{\tau}^{(-\infty,0]\cap\mathbb{Z}}(\lambda_1) + 1.$$
(2)

Split $[\lambda, \lambda + \delta]$ in O(T) subintervals of length $\Delta \lambda = O(1/T)$. On each subinterval, (2) succeeds with probability $\Delta \lambda = O(1/T)$ on [0, 1] and with O(1) on [0, T] by a geometric-type series argument. Sandra Kliem (Univ. Duisburg-Essen) Contact process and KPP-equation with noise 06. Sept., 2017 14 / 29

A summary

• Let $\lambda > \lambda_c$. Self-duality; 4 Harris' convergence theorem. • Let $\alpha_t := \mathbb{E}[r_t^{(-\infty,0]\cap\mathbb{Z}}]$. Then • $\alpha_{t+u} < \alpha_t + \alpha_u$, t, u > 0 and • $\lim_{T\to\infty} \alpha_T/T = \inf_{T>0} \alpha_T/T$ exists (and $=: \alpha = \text{const.}$) • $\alpha_{\tau}(\lambda + \delta) - \alpha_{\tau}(\lambda) > \delta T$ for all $\delta > 0$. $\triangleright \mathbb{E}\left[r_t^{B\cup\{1\}} - r_t^B\right] \ge \mathbb{E}\left[r_t^{(-\infty,1]\cap\mathbb{Z}} - r_t^{(-\in\lambda_1 fty,0]\cap\mathbb{Z}}\right] = 1,$ $\triangleright r_{\tau}^{(-\infty,0]\cap\mathbb{Z}}(\lambda_2) > r_{\tau}^{(-\infty,0]\cap\mathbb{Z}}(\lambda_1) + 1.$ $Iim_{T \to \infty} r_T^{(-\infty,0] \cap \mathbb{Z}} / T = \alpha a.s.$ **8** On $\{\tau^{\{0\}} = \infty\}$, $r_{\star}^{(-\infty,0] \cap \mathbb{Z}} = r_{\star}^{\{0\}}$. Omplete convergence theorem.

The KPP-equation with noise

The KPP equation with noise

We investigate solutions $u(t, x) = u_t(x) = u_t^{(u_0)}(x)$ to the stochastic partial differential equation (SPDE)

$$\partial_t u = \partial_{xx} u + \theta u - u^2 + \sqrt{u} dW, \qquad t > 0, x \in \mathbb{R}, \theta > 0$$
(3)
$$u(0, x) = u_0(x) \ge 0.$$

- \triangleright *u* \rightsquigarrow particle density,
- $\triangleright \partial u_{xx} \rightsquigarrow$ particles move in space (\mathbb{R}^1) as independent Brownian motions,
- $\triangleright \theta u \rightsquigarrow$ linear mass creation,
- $\triangleright \ -u^2 \rightsquigarrow$ competition between particles "if they meet" / death due to overcrowding,
- $\triangleright \sqrt{u}dW \rightsquigarrow$ standard deviation of particle branching (*W* a white noise).

Remark

Solutions to (3) arise as limits of scaled long-range contact processes (cf. [MT95] (C. Mueller and R. Tribe, 1995)).

Existing Results

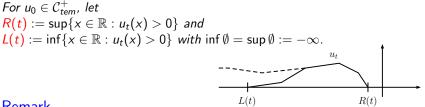
Choose \mathcal{C}_{tem}^+ as type-stace, that is, the set of non-negative continuous functions with slower than exponential growth.

Theorem ([T96] (R. Tribe), Theorem 2.2)

(a) For all $f \in \mathcal{C}_{term}^+$ there exists a solution that starts in f.

(b) All solutions have the same law \mathbb{P}_f and the strong Markov property holds. The map $f \mapsto \mathbb{P}_f$ is continuous.

Definition



Remark

One can show: If $R(0) < \infty$, then $R(t) < \infty$ for all $t \ge 0$ a.s. A similar statement holds for L(t).

The critical value θ_c

Definition We say "*u* survives" if $\tau := \inf\{t \ge 0 : u_t \equiv 0\} = \infty$. Theorem ([MT94] (C. Mueller and R. Tribe), Theorem 1)

Let u(t, x) be a solution to

$$rac{\partial u}{\partial t} = \Delta u + heta u - u^2 + \sqrt{u}\dot{W}, \qquad t > 0, x \in \mathbb{R}, \theta > 0,$$

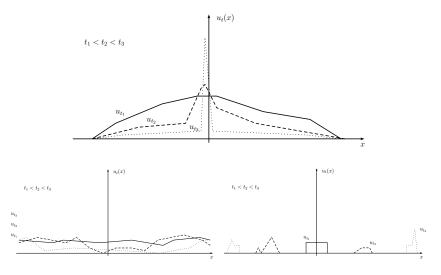
 $u(0, x) = u_0(x) \ge 0$

with $u_0 \in C_c^+$. Then there exists a constant $\theta_c > 0$, independent of u_0 , such that: (a) If $\theta < \theta_c$, then $\mathbb{P}_{u_0}(u \text{ survives}) = \mathbb{P}_{u_0}(\tau = \infty) = 0$. (b) If $\theta > \theta_c$, then $\mathbb{P}_{u_0}(u \text{ survives}) = \mathbb{P}_{u_0}(\tau = \infty) > 0$.

From now onwards, let $\theta > \theta_c$.

Longterm Behavior for arbitrary initial conditions?

Open Question: Complete convergence?



Sandra Kliem (Univ. Duisburg-Essen) Contact process and KPP-equation with noise

06. Sept., 2017 20 / 29

Analogue to Harris' convergence theorem for additive particle systems

Self-Duality

Let u, v be independent solutions to (3) with initial conditions $u_0, v_0 \in C_{tem}^+$, then we have for all $0 \le s \le t$,

$$\mathbb{E}_{u_0}\left[e^{-2\langle u_t, v_0\rangle}\right] = \mathbb{E}_{u_0} \otimes \mathbb{E}_{v_0}\left[e^{-2\langle u_s, v_{t-s}\rangle}\right] = \mathbb{E}_{v_0}\left[e^{-2\langle u_0, v_t\rangle}\right].$$

where $\langle f,g \rangle := \int_{\mathbb{R}} f(x)g(x)dx$.

Theorem ([HT04] (P. Horridge and R. Tribe), Theorem 1) Let $\theta > \theta_c$. If $\nu \in \mathcal{P}(\mathcal{C}_{tem}^+)$ only assigns mass to functions that are "uniformly distributed in space", then

 $\mathcal{L}(u_t^{(\nu)}) \Rightarrow \mu \text{ for } t \to \infty.$

The limiting measure $\mu \in \mathcal{P}(\mathcal{C}^+_{\mathit{tem}})$ is unique and

- translation invariant (in space), stationary, $\mu(f
 ot\equiv 0) = 1$
- and has as Laplace-functional

$$\mathbb{E}\Big[e^{-2\langle \mu,g
angle}\Big]:=\int e^{-2\langle f,g
angle}\mu(df)=\mathbb{P}_g(au<\infty),\qquad g\in\mathcal{C}_c^+.$$

Sandra Kliem (Univ. Duisburg-Essen)

Contact process and KPP-equation with noise

06. Sept., 2017 21 / 29

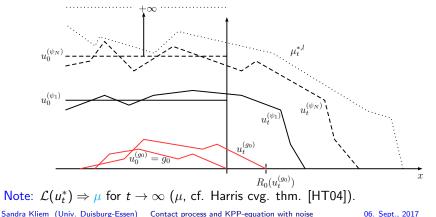
A summary

1	Let $\lambda > \lambda_c$.
2	Self-duality;
3	$\mathbb{P}(\xi_\infty^\mathbb{Z}\cap B eq \emptyset)=\mathbb{P}(au^B=\infty).$
4	Harris' convergence theorem.
5	Let $\mathbf{\alpha_t} := \mathbb{E}[r_t^{(-\infty,0] \cap \mathbb{Z}}]$. Then
	• $\alpha_{t+u} < \alpha_t + \alpha_u, t, u > 0$ and
	• $\lim_{T\to\infty} \alpha_T/T = \inf_{T>0} \alpha_T/T$ exists (and =: α = const.)
6	$\alpha_T(\lambda + \delta) - \alpha_T(\lambda) \ge \delta T$ for all $\delta \ge 0$.
	$\triangleright \ \mathbb{E}\Big[r_t^{B \cup \{1\}} - r_t^B\Big] \geq \mathbb{E}\Big[r_t^{(-\infty,1] \cap \mathbb{Z}} - r_t^{(-\infty,0] \cap \mathbb{Z}}\Big] = 1,$
	$\triangleright \ r_{\tau}^{(-\infty,0]\cap\mathbb{Z}}(\lambda_2) \geq r_{\tau}^{(-\infty,0]\cap\mathbb{Z}}(\lambda_1) + 1.$
7	$\lim_{T ightarrow\infty} r_T^{(-\infty,0]\cap\mathbb{Z}}/T=lpha$ a.s.
8	On $\{\tau^{\{0\}} = \infty\}$, $r_t^{(-\infty,0] \cap \mathbb{Z}} = r_t^{\{0\}}$.
9	Complete convergence theorem.

Analogue to $\xi_t^{(-\infty,0]\cap\mathbb{Z}}$ and $\xi_t^{\mathbb{Z}}$ (cf. [K17] (S. Kliem)) Let $\psi_n \uparrow "\infty" \cdot 1_{(-\infty,0)}$, then for t > 0, $\mathcal{L}(u_t^{(\psi_N)}) \Rightarrow \mathcal{L}(u_t^{*,l}) \in \mathcal{P}(\mathcal{C}_{tem}^+)$ for $N \to \infty$.

Let $\psi_n \uparrow "\infty$ ", then for t > 0,

$$\mathcal{L}(u_t^{(\psi_N)}) \Rightarrow \mathcal{L}(u_t^*) \in \mathcal{P}(\mathcal{C}_{tem}^+) ext{ for } N o \infty.$$



23 / 29

A summary

• Let $\lambda > \lambda_c$. Self-duality; 4 Harris' convergence theorem. • Let $\alpha_t := \mathbb{E}[r_t^{(-\infty,0]\cap\mathbb{Z}}]$. Then • $\alpha_{t+u} < \alpha_t + \alpha_u$, t, u > 0 and • $\lim_{T\to\infty} \alpha_T/T = \inf_{T>0} \alpha_T/T$ exists (and $=: \alpha = \text{const.}$) **Becomes:** Let $\alpha_t := \mathbb{E}[u_t^{*,l}]$. Then • $\alpha_{t+u} \leq \alpha_t + \alpha_u$, t, u > 0 and • $\lim_{T\to\infty} \alpha_T/T = \inf_{T>0} \alpha_T/T$ exists (and $=: \alpha = \text{const.}$) **6** $\alpha_T(\lambda + \delta) - \alpha_T(\lambda) \ge \delta T$ for all $\delta > 0$ $\triangleright \mathbb{E}\left[r_t^{B\cup\{1\}} - r_t^B\right] \ge \mathbb{E}\left[r_t^{(-\infty,1]\cap\mathbb{Z}} - r_t^{(-\infty,0]\cap\mathbb{Z}}\right] = 1,$ $\triangleright r_{\tau}^{(-\infty,\mathbf{0}]\cap\mathbb{Z}}(\lambda_2) > r_{\tau}^{(-\infty,\mathbf{0}]\cap\mathbb{Z}}(\lambda_2) + 1.$ $Iim_{T \to \infty} r_T^{(-\infty,0] \cap \mathbb{Z}} / T = \alpha \text{ a.s.}$ **8** On $\{\tau^{\{0\}} = \infty\}$, $r_t^{(-\infty,0] \cap \mathbb{Z}} = r_t^{\{0\}}$. Omplete convergence theorem.

Sandra Kliem (Univ. Duisburg-Essen) Contact process and KPP-equation with noise

06. Sept., 2017 24 / 29

Travelling wave solutions

Let

$$u_{\mathcal{T}}: \text{ the law of } rac{1}{\mathcal{T}}\int_{0}^{\mathcal{T}}u_{t}(\cdot+R(s))ds \ ext{ under } \mathbb{P}_{u_{0}},$$

where $u_0 \in \mathcal{C}^+_{tem}$ arbitrary.

Definition

A travelling wave solution to (3), is a solution with

(i)
$$R(u(t)) \in (-\infty, \infty)$$
 for all $t \ge 0$,
(ii) $u(t, \cdot + R(u(t)))$ is a (temporarily) stationary process.
 u_t
 u_t
 $u_t(\cdot + R(t))$
 $R(t)$

For f₀ Heavyside initial data (and R(t) replaced by R₁(t) = log(∫ e^xu_t(x)dx)), the sequence (ν_T)_{T∈ℕ} is tight. Every subsequential limit yields a travelling wave solution with "tip at zero" a.s. (cf. [T96]).

Solution For $g_0 \in \mathcal{C}_c^+ \setminus \{0\}$, the same holds true (conditional on survival) (cf. [K17]).

A summary

• Let $\lambda > \lambda_c$. 2 Self-duality; 3 $\mathbb{P}(\xi_{\infty}^{\mathbb{Z}} \cap B \neq \emptyset) = \mathbb{P}(\tau^{B} = \infty).$ 4 Harris' convergence theorem. **9** Becomes: Let $\alpha_t := \mathbb{E}[u_t^{*,l}]$. Then • $\alpha_{t+u} < \alpha_t + \alpha_u$, t, u > 0 and • $\lim_{T\to\infty} \alpha_T/T = \inf_{T>0} \alpha_T/T$ exists (and $=: \alpha = \text{const.}$) $\circ \alpha_{\mathcal{T}}(\lambda + \delta) - \alpha_{\mathcal{T}}(\lambda) > \delta T \text{ for all } \delta > 0.$ WiP: Let $\beta_T(\theta) := \beta_T := \frac{2}{T} \int_0^{T/2} \mathbb{E} \left[R(u_{T/2+s}^{*,l}) \right] ds$. Then $\beta_T(\theta_2) - \beta_T(\theta_1) > C(\theta_2 - \theta_1)T$ for all $\theta < \theta_1 < \theta_2 < \overline{\theta}$ and T big enough. Conclusion: For all $\theta > \theta_c$, $\lim_{T\to\infty} \alpha_T/T > 0$. $\lim_{T \to \infty} r_{\tau}^{(-\infty,0] \cap \mathbb{Z}} / T = \alpha \text{ a.s.}$ **8** On $\{\tau^{\{0\}} = \infty\}$, $r_t^{(-\infty,0] \cap \mathbb{Z}} = r_t^{\{0\}}$. Omplete convergence theorem. Sandra Kliem (Univ. Duisburg-Essen) Contact process and KPP-equation with noise

Open Questions

Note: θ_c is also the critical value for the existence of a nontrivial stationary distribution.

Open Questions:

- **1** Travelling wave speed $A = A(\nu) > 0$? Deterministic? Dependent on ν ?
- **2** Does the limiting speed of an arbitrary solution to (3), $A(u_0) := \lim_{t \to \infty} R(u_t)/t$, $u_0 \in C^+_{tem}$ exist?

Suppose A(ν) > 0 with positive probability for ν. Does that imply A(g₀) > 0 w.p.p. for g₀ with compact support?

Bibliography

DURRETT, R.

On the growth of one-dimensional contact processes. AOP 8 (1980), 890–907.

DURRETT, R.

Ten lectures on particle systems. LNM 1608 (1995), 97–201. Lectures on Prob. Theory (Saint-Flour, 1993), Springer, Berlin.

DURRETT, R. and Griffeath, D.

Supercritical contact processes on Z. AOP 11 (1983), 1–15.

HORRIDGE, P. and TRIBE, R.

On stationary distributions for the KPP equation with branching noise. *AIHP* **40** (2004), 759–770.

KLIEM, S.

Travelling wave solutions to the KPP equation with branching noise arising from initial conditions with compact support. SPA 127 (2017), 385–418.

$\mathrm{MUELLER},\ \mathrm{C}.\ \text{and}\ \mathrm{TRIBE},\ \mathrm{R}.$

A phase transition for a stochastic PDE related to the contact process. *PTRF* **100** (1994), 131–156.

MUELLER, C. and TRIBE, R.

Stochastic p.d.e.'s arising from the long range contact and long range voter processes. PTRF 102 (1995), 519–545.

TRIBE, R.

A travelling wave solution to the Kolmogorov equation with noise. SSR 56 (1996), 317–340.

Sandra Kliem (Univ. Duisburg-Essen)

Contact process and KPP-equation with noise

Thank You

Sandra Kliem (Univ. Duisburg-Essen) Contact process and KPP-equation with noise

06. Sept., 2017 29 / 29