Branching Brownian motion, mean curvature flow and the motion of hybrid zones Sarah Penington Joint work with Alison Etheridge and Nic Freeman Mathematical Institute University of Oxford ## Hybrid zones Suppose two species live close to each other and interbreed, but the offspring have lower evolutionary fitness. Hybrids are found in a narrow interface between the two populations. How does the interface evolve? (on a suitable space- and time-scale) # Hybrid zones # Spatial Λ -Fleming-Viot process (SLFV) with types a, A $w_t(x) :=$ proportion of type a at spatial position x at time t Poisson point process Π on $\mathbb{R}\times\mathbb{R}^2\times\mathbb{R}_+\times(0,1]$. At each $(t,x,r,u)\in\Pi$, - 1. Choose a parental location z uniformly at random in $\mathcal{B}_r(x)$. - 2. Choose a parental type α according to $w_{t-}(z)$, i.e. $\alpha = a$ with probability $w_{t-}(z)$. - 3. Replace a fraction u of the population in $\mathcal{B}_r(x)$ with type α : $$w_t(y) = (1 - u)w_{t-}(y) + u\mathbb{1}_{\{\alpha = a\}}, \quad \forall y \in \mathcal{B}_r(x).$$ We call u the impact of the event. #### Relative fitnesses AA individuals have relative fitness 1 Aa individuals have relative fitness 1-s aa individuals have relative fitness 1 Let \boldsymbol{w} be proportion of type a. Proportions of aa, Aa and AA individuals are w^2 , 2w(1-w) and $(1-w)^2$. $$\mathbb{P}(\text{new gamete is type }a) = \frac{w^2+2w(1-w)\cdot\frac{1}{2}(1-s)}{1-2sw(1-w)}$$ $$= (1-s)w+s(3w^2-2w^3)+\mathcal{O}(s^2)$$ $\mathbb{P}(\text{majority of 3 i.i.d. Bernoulli}(w) \text{ r.v.s are } 1) = w^3 + 3w^2(1-w) \\ = 3w^2 - 2w^3.$ ## SLFV with selection against heterozygosity (SLFVS) Fix $u \in (0,1]$, s>0, $\mathcal{R}>0$. Let μ be a finite measure on $(0,\mathcal{R}]$ and let Π be a Poisson point process on $\mathbb{R}\times\mathbb{R}^2\times(0,\mathcal{R}]$ with intensity measure $$dt \otimes dx \otimes \mu(dr)$$. If $(t, x, r) \in \Pi$, with probability 1 - s the event is neutral: - 1. Choose a parental location z uniformly at random within $\mathcal{B}_r(x)$, and a parental type, α , according to $w_{t-}(z)$. - 2. For every $y \in \mathcal{B}_r(x)$, set $w_t(y) = (1-u)w_{t-}(y) + u\mathbb{1}_{\{\alpha=a\}}$. With probability s the event is selective: - 1. Choose three 'potential' parental locations z_1, z_2, z_3 uniformly at random in $\mathcal{B}_r(x)$, and then types $(\alpha_i)_{i=1,2,3}$, according to $(w_{t-}(z_i))_{i=1,2,3}$ independently. Let α denote the majority type of $(\alpha_i)_{i=1,2,3}$. - 2. For every $y \in \mathcal{B}_r(x)$, set $w_t(y) = (1-u)w_{t-}(y) + u\mathbb{1}_{\{\alpha=a\}}$. #### SLFVS dual The dual process $(\mathcal{P}_t)_{t\geq 0}$ is a $\bigcup_{k\geq 1}(\mathbb{R}^2)^k$ -valued Markov process with $\mathcal{P}_0=z_0$ and for $t\geq 0$, $\mathcal{P}_t=(\xi^1_t,\ldots,\xi^{N_t}_t)$. At each event $(t,x,r)\in\Pi$, with probability 1-s: - 1. For each $\xi_{t-}^i \in \mathcal{B}_r(x)$, independently mark the corresponding lineage with probability u. - 2. If at least one lineage is marked, all marked lineages disappear and are replaced by a single lineage, whose location is drawn uniformly at random from within $\mathcal{B}_r(x)$. #### With probability s: - 1. For each $\xi_{t-}^i \in \mathcal{B}_r(x)$, independently mark the corresponding lineage with probability u. - 2. If at least one lineage is marked, all marked lineages disappear and are replaced by three lineages, whose locations are drawn independently and uniformly from within $\mathcal{B}_r(x)$. In both cases, if no lineages are marked, then nothing happens. ## **Duality relation** After running dual for time t, the set of lineages at $x \in \mathbb{R}^2$ votes a with probability $w_0(x)$ and votes A otherwise. Votes at different locations are independent. Trace votes back through the branching and coalescing structure, carrying the majority vote back at each branch point, to get a vote at the root - call this $\mathsf{Vote}_{w_0}(\mathcal{P}_t)$. Weak moment duality: $$\mathbb{E}_{w_0}\left[\int_{\mathbb{R}^2} \psi(x) w_t(x) dx\right] = \int_{\mathbb{R}^2} \psi(x) \mathbb{P}_x[\mathsf{Vote}_{w_0}(\mathcal{P}_t) = a] dx.$$ ## Rescaling limits of the SLFVS Let $(w_t^n)_{t\geq 0}$ denote the SLFVS with impact parameter $u_n=n^{-1+2\alpha}$, bounded radius distribution and selection parameter $s_n=\varepsilon^{-2}n^{-2\alpha}$, and initial condition $w_0^n(x)=w_0(n^{-\alpha}x)$. Theorem (Etheridge, Véber, Yu 2014) If $\alpha < 1/4$ then (after a constant time and space rescaling) a spatially averaged version of $(w^n_{nt}(n^\alpha x))_{t\geq 0}$ converges to the solution of $$\frac{\partial g}{\partial t} = \Delta g + \frac{1}{\varepsilon^2} g(1 - g)(2g - 1).$$ #### **Simulations** Thanks to Jerome Kelleher #### Curvature flow Suppose for each $t, X_t: S^1 \to \mathbb{R}^2$ is a smooth embedding. Let $N_t(\phi)$ denote the inwards normal vector to X_t at $X_t(\phi)$. Let $\kappa_t(\phi)$ denote the curvature of X_t at $X_t(\phi)$. #### Definition X is a motion by curvature flow if $$\frac{\partial X_t(\phi)}{\partial t} = \kappa_t(\phi) N_t(\phi)$$ for all t, ϕ . $X_t(\cdot)$ shrinks to a point as $t \to T$ for some $T < \infty$. ## Allen-Cahn equation Suppose $g_0: \mathbb{R}^2 \to [0,1]$ is such that $\Gamma = \{x \in \mathbb{R}^2 : g_0(x) = 1/2\}$ is a smooth embedding of S^1 with $g_0 < 1/2$ inside Γ and $g_0 > 1/2$ outside Γ . Let $(\Gamma_t)_{t \leq T}$ be the motion by curvature flow with $\Gamma_0 = \Gamma$ and let d(x,t) denote the signed distance of x from Γ_t (negative inside Γ_t). Take $T^* < T$. ## Theorem (Chen, 1990) Suppose g(t,x) is a solution to $$\frac{\partial g}{\partial t} = \Delta g + \frac{1}{\varepsilon^2} g(1-g)(2g-1)$$ with initial condition $g(0,x)=g_0(x) \ \forall x$. Then for $k \in \mathbb{N}$, $\exists \ a(k), c(k) < \infty \ \text{s.t. for } a\varepsilon^2 |\log \varepsilon| \leq t \leq T^*$, - for x s.t. $d(x,t) \ge c\varepsilon |\log \varepsilon|$, $g(t,x) \ge 1 \varepsilon^k$ - for x s.t. $d(x,t) < -c\varepsilon |\log \varepsilon|$. $a(t,x) < \varepsilon^k$. ## Rescaling limits of the SLFVS Let $(w_t^n)_{t\geq 0}$ denote the SLFVS with impact parameter $u_n=n^{-1+2\alpha}$, bounded radius distribution and selection parameter $s_n=\varepsilon_n^{-2}n^{-2\alpha}$, and initial condition $w_0^n(x)=w_0(n^{-\alpha}x)$. Suppose $\Gamma=\{x\in\mathbb{R}^2:w_0(x)=1/2\}$ is a smooth embedding of S^1 with $w_0<1/2$ inside Γ and $w_0>1/2$ outside Γ . Let $(\Gamma_t)_{t\leq T}$ be the motion by curvature flow with $\Gamma_0=\Gamma$ and let d(x,t) denote the signed distance of x from Γ_t (negative inside Γ_t). #### Theorem (Etheridge, Freeman, P. 2016) If $\alpha < 1/4$ and $\varepsilon_n = o(1)$, $\varepsilon_n^{-2} = o(\log n)$ then (after a constant time and space rescaling) for $k \in \mathbb{N}$, $\exists \, b(k), c(k) < \infty$ s.t. for n sufficiently large, for $b\varepsilon_n^2 |\log \varepsilon_n| \leq t \leq T^*$, - for a.e. x s.t. $d(x,t) \ge c\varepsilon_n |\log \varepsilon_n|$, $\mathbb{E}_{w_0}[w_{nt}^n(n^\alpha x)] \ge 1 \varepsilon_n^k$ - for a.e. x s.t. $d(x,t) \leq -c\varepsilon_n |\log \varepsilon_n|$, $\mathbb{E}_{w_0}[w_{nt}^n(n^\alpha x)] \leq \varepsilon_n^k$. Let $g_0: \mathbb{R}^2 \to [0, 1]$. Let $(W^i_t)_{i\in N_t}$ be the particles at time t in a 2-dimensional ternary BBM with branching rate ε^{-2} . Majority voting procedure: - lacktriangle each particle W^i_t has a vote which is independent Bernoulli $(g_0(W^i_t))$ - carry votes back through tree carry majority vote back at each branch point. Let $Vote_{q_0}(\mathbf{W}_t)$ denote vote at the root. Proposition (Duality relation) Suppose $g_0 \in C^2(\mathbb{R}^2)$. Then $$g(t,x) = \mathbb{P}_x(Vote_{q_0}(\mathbf{W}_t) = 1)$$ is a solution to $\frac{\partial g}{\partial t} = \frac{1}{2}\Delta g + \frac{1}{\varepsilon^2}g(1-g)(2g-1).$ Let ${\rm Vote}({\bf B}_t)$ denote result of a majority vote on 1D ternary BBM with branching rate ε^{-2} where particle B_t^i votes 1 iff $B_t^i \geq 0$. #### **Fact** $$\mathbb{P}_x(\mathit{Vote}(\mathbf{B}_t) = 1) = 1 - \mathbb{P}_{-x}(\mathit{Vote}(\mathbf{B}_t) = 1).$$ Let ${\sf Vote}({\bf B}_t)$ denote result of a majority vote on 1D ternary BBM with branching rate ε^{-2} where particle B_t^i votes 1 iff $B_t^i \geq 0$. #### **Fact** $$\mathbb{P}_x(\mathit{Vote}(\mathbf{B}_t) = 1) = 1 - \mathbb{P}_{-x}(\mathit{Vote}(\mathbf{B}_t) = 1).$$ #### Lemma For $$x \geq 0$$, $\mathbb{P}_x(Vote(\mathbf{B}_t) = 1) \geq \mathbb{P}_x(B_t \geq 0)$. Let ${\rm Vote}({\bf B}_t)$ denote result of a majority vote on 1D ternary BBM with branching rate ε^{-2} where particle B_t^i votes 1 iff $B_t^i \geq 0$. #### Fact $$\mathbb{P}_x(\mathit{Vote}(\mathbf{B}_t) = 1) = 1 - \mathbb{P}_{-x}(\mathit{Vote}(\mathbf{B}_t) = 1).$$ #### Lemma For $$x \geq 0$$, $\mathbb{P}_x(Vote(\mathbf{B}_t) = 1) \geq \mathbb{P}_x(B_t \geq 0)$. #### Proposition For $$k \in \mathbb{N}$$, $\exists a(k), c(k) < \infty$ s.t. for $a\varepsilon^2 |\log \varepsilon| \le t \le T^*$, $x \ge c\varepsilon |\log \varepsilon|$, $$\mathbb{P}_x(\textit{Vote}(\mathbf{B}_t) = 1) > 1 - \varepsilon^k.$$ Suppose $\Gamma=\{x\in\mathbb{R}^2:g_0(x)=1/2\}$ is a smooth embedding of S^1 with $g_0<1/2$ inside Γ and $g_0>1/2$ outside Γ . Let $(\Gamma_t)_{t\leq T}$ be the motion by curvature flow with $\Gamma_0=\Gamma$ and let d(x,t) denote the signed distance of x from Γ_t (negative inside Γ_t). #### **Theorem** For $k \in \mathbb{N}$, $\exists a(k), c(k) < \infty$ s.t. for $a\varepsilon^2 |\log \varepsilon| \le t \le T^*$, - if $d(x,t) \ge c\varepsilon |\log \varepsilon|$, $\mathbb{P}_x(Vote_{q_0}(\mathbf{W}_t) = 1) \ge 1 \varepsilon^k$ - if $d(x,t) \leq -c\varepsilon |\log \varepsilon|$, $\mathbb{P}_x(Vote_{g_0}(\mathbf{W}_t) = 1) \leq \varepsilon^k$.