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Part 1: Biological motivation



Speciation

I Speciation: when two subpopulations accumulate enough
genetic differences, they become genetically incompatible.

1. Pre-zygotic isolation: preferential mating.
2. Post-zygotic isolation: hybrid depression.

I It is well established (e.g., Malécot) that geographic structure
affects the genetic diversity of a population.

I We aim at modeling the genetic divergence of populations in
a structured population.

I General question: Under which geographical conditions can a
species remain genetically coherant ? or at the contrary, under
which conditions can speciation occur ? how long does it take
?



How do populations diverge (I) ? Rugged fitness landscape

I Fitness landscape: each genotype gets assigned a fitness value.

I According to Wright (1931): fitness andscapes should have
local adaptive peaks separated by adaptive valleys.

I Adaptive peaks are interpreted as different species

I Adaptive valleys are interpreted as unfit hybrids



Rugged fitness landscape.

I Speciation occurs when a sub-population goes from one peak
to the other.

I Need to pass through a valley.

I Intuitive idea of Wright : founder effect.

I In a small enough population, genetic drift is strong enough to
counterbalance the effect of selection.

I Example: Diploid population. Genome only consists of a
single locus with two alleles a and A with

waa = 1,waA = 1− s,wAA = 1

I When ns = 20 (say a population size of 200 and a fitness
penalty of s = 0.1), the probability to cross the valley is
approximately 10−8 to cross the valley.



How do populations diverge (II) ? Holey landscape

I Alternative topography: Local maxima could be be partitioned
into connected sets (or evolutionary ridges)

I Holey landscape: Evolutionary ridges typically have
complicated geometry

I Speciation: a population diffuses until it stands at the other
side of a hole

I Maynard Smith (1970) : “if evolution by natural selection is
to occur, functional proteins must form a continuous network
which can be traversed by unit mutational steps without
passing through nonfunctional intermediates”.
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Holey landscape. Dobzhansky model (1967)

I two loci with two alleles aA and bB respectively.

I waa∗∗ = w∗∗BB = 1 but any other genotype gets assigned a
fitness value 1− s.

I Starting from a population aaBB, the population can drift in
two ways: either to aabb or AABB.

I Finally, any recombination of types aabb and AABB produce
an unfit individual.



Rugged vs Holey landscape

I Experimental justifaction: Orr (1995) identified pairs of loci
on the Drosophilia chromosome suggesting a
Dobzhansky-type mechanism.

I Theorectical justification: In high-dimensional genotype space,
fitness peaks are typically related by evolutionary ridges.

I Gavrilets and Gravener (1997) used a simple percolation
model on the hypercube {0, 1}n.

I A genome is viable (resp., unviable) with probability p (resp.,
1− p).

I When p > 1/n, as n→∞, the size of the largest viable
connected component (or evolutionary ridge) goes to ∞ at a
speed O(p2n).

I The classical NK model exhibits similar behavior in high
dimension (quasi-Holey landscape).



General framework to study speciation (Gavrilets 1997,
1998, 2002), Yamagushi, Iwasa (2015)

I Ignore deleterious mutations. In large populations, they are
washed away by selection at the micro-evolutionary scale.

I Describe the dynamics on the evolutionary ridge as neutral
(Any genotypes on the ridge can be accessed by
single-mutation neutral steps)

I Evolutionary dynamics along an evolutionary ridge is assumed
to be slow. Along the evolutionary ridge, random mutations
are very likely to be deleterious.



Part II: Individual based model, Main results



Individual based model

I Multi-locus Moran model with mutation and migration.

I Structured population: pop. is subdivided into N
subpopulations. Island i is composed by ni individuals.

I Each individual is identified with a chromosome of size 1.

I l = # of Loci responsible for speciation.

I loci are distributed uniformly along the chromosome.



An underlying individual based model

• Reproduction: haploid Moran model
with recombination

→ Each ind. reproduces at rate 1,
chooses a random partner.

→ Their offspring replaces a randomly
chosen ind.

→ Recombination: Offspring is a
obtained by pasting together
fragments of the parents
chromosomes.

→ Number of cross-overs follows
Poisson(λ)



An underlying individual based model

• Reproduction: haploid Moran model
with recombination

• Mutation at rate u per individual per
locus (infinite allele model).

• Migration i → j , at rate mij . A copy
of one random individual in i migrates
from i to j , and replaces an individual
chosen uniformly at random in
population j .
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I mutation tends to increase distances



Scaling limit
We will consider the following regime

u , mi ,j <<︸︷︷︸
low mut.–migr.

1

ni
,

1

l
<<︸︷︷︸

large pop.

1

I In the usual so-called weak limit regime (structured Kingman
coalescent – Wright-Fisher diffusion with
mutation-migration), it is assumed that

mi ,j , u = O(ε), 1/ε is a typical population size

I In the weak limit regime,at a given locus, there is a non-trivial
polymorphism at the intra-population level.

I Here, we assume that mutation events and migration events
are rare so that intra-population diversity can be negligated at
the limit.

I This will allow to approximate our IBM model by a PBM.
I Rationale: Along the evolutionary ridge, changes occur at the

macro-evolutionary time-scale



In order to implement the regime

u , mi ,j <<︸︷︷︸
low mut.–migr.

1

ni
,

1

l
<<︸︷︷︸

large pop.

1

We assume that the parameters of our model (ni ,mi ,j , u, l)
depend on two scaling factors (ε, γ) with{

ni ≡ nεi with εnεi → Ni

l ≡ l ε with l ε →∞

(1/ε typical size of a population, l ε typical number of loci involved
in speciation) and{

mi ,j ≡ mγ
i ,j with 1

γm
γ
i ,j → Mi ,j

u ≡ uγ,ε with 1
εγu

γ,ε → U∞

(γ typical rate of migration)

Then we let succesively γ and then ε go to 0 (so that ε >> γ).

Note that and u/mi ,j = O(ε) (balance mutation/migration).



Distance between islands

I We aim at describing the genetic distance between islands.

I When ε >> γ, sub-populations are typically monomorphic.

I When island i and j are monomorphic, define

d ε,γt (i , j) =
1

l
#segregating loci between island i and j at time t.

I (otherwise take the average number of segregating sites
between two randomly sampled individuals)

I The genetic distance between two populations evolve when
one or several alleles fixate in the a population following a
mutation or migration event.

I Since those events are rare, we accelerate time by 1/γε



Theorem 1 (Miro Pina, S.)
When island i and j are monomorphic, define

dε,γt (i , j) =
1

l
#segregating loci between island i and j at time t.

For every i , j , there is a deterministic process (Dt(i , j); t ≥ 0) s.t.:

lim
ε→0

lim
γ→0

(dε,γ
t/γε

(i , j); t ≥ 0) = (Dt(i , j); t ≥ 0) in distribution (in the weak topology).

Moreover lim
t→∞

Dt(i , j) = 1− E(e−2U∞τij ), where

τij = inf{t ≥ 0 : S i (t) = S j (t)},

and where S i and S j are two independent random walks on {1, · · · ,N} starting
respectively from i and j and whose transition rate from k to l is given by

M̃kl :=
Mlk

Nk
for every k, l ∈ {1, · · · ,N}.



Example: Geographic Bottleneck
I Two complete graphs G1 and G2 with N vertices.
I v1 ∈ G1, v2 ∈ G2, v1 ∼ v2.
I For i ∼ j , Mi ,j = 1

N .
I U∞ = c

N for some c > 0.

Proposition

Then for any two neighbours i , j ∈ G

1− E (exp(−2U∞τij)) =

{ c
1+c + o(1) if i , j ∈ G1, or if i , j ∈ G2

1− 1
N + o( 1

N ) if i = v1 and j = v2



Part III: Idea of the proof



A population based model

I Since u , mi ,j << 1
ni
, 1

s , intra-subpopulation diversity can
be neglected .

I As γ → 0 (ε fixed): Mutiscale Moran model. Slow dynamics
at the inter-population level. Fast dynamics at the
intra-population level.

This allows to approximate the IBM by the following population
based model (PBM).



A population based model

When γ → 0 (scaling parameter for mutation and migration) and ε
remains fixed, each island is represented by a single chromosome
indexed from {1, · · · ,N}. Two types of transition:

→ Mutation For every island i , locus k, fix a mutation at rate
U∞.

→ Migration

1. Start with 1 migrant individual in a monomorphic resident
population of size nεj . Define Fεj to be the random set of loci
at which the migrant allele fixates.

2. At rate 1
εMij , fixate the migrant alleles (island i) in resident

population (island j) at a random set of loci, where the
random set of loci is distributed as Fεj .



Genetic partition

I As γ → 0, the IBM converges to the PBM (indexed by the
inverse population size ε).

I In the PBM, at every locus k ∈ {1, · · · , l}, types induce a
partition of the meta-population denoted by Πε

k(t):

Πε
1(t) = {i}{j , k}

Πε
4(t) = {i , j}{k}

The genetic partition vector Πε(t) = (Πε
m(t); m ∈ {1, · · · , l})

describes the genetic composition of the population at time t.



Some properties of the genetic partition vector

I For every k ∈ {1, · · · , l}, (Πε
k(t); t ≥ 0) is a Markov process

on the set of partitions.

(mutation) island i is singled out at rate U∞ (i takes on a new type).
(migration) with rate

Mi,j ×
1

εnεj

displace j in the block containing i (j inherits the type of i)

I Stationarity: For every m ≤ n, Πε
m is identical in law to Πε

n.

I Non trivial correlation between loci: a single migration event
has an impact on several loci simultaneously.

I Cornerstone of the approach: ergodic theorem along the
sequence when ε→ 0.

I For all Π ∈ (PN)l , X (Π) = 1
l

∑
k≤l δΠk

, is the empirical
measure associated to the “sample” Π1, · · · ,Πl . In the
following,

ξεt = X (Πε(t))



Ergodic theorem along the chromosome

Theorem 2 (Miro Pina, S.)

Assume ∃ P0 ∈MN s.t. X (Πε(0)) −→
ε→0

P0. Then

(ξεt ; t ≥ 0) =⇒
ε→0

(Pt ; t ≥ 0) in distribution in the weak topology,

where P is a deterministic probability measure on the space of
partitions. More precisely, P solves the forward Kolmogorov
equation associated to a one-locus Moran model, i.e.,

d

ds
Ps = tGPs

with initial condition P0 = P0, where G is the generator describing
the dynamics of the partition at an arbitrary locus on the
chromosome.



Proof of Thm 1 based on Thm 2

I Define d εt = 1
lε#segregating loci between i and j at time t

the genetic distance in the PBM. Then

d εt (i , j) =
1

l

l∑
k=1

1i 6∼Πk (t)j

= ξεt ({π ∈ PN : i 6∼π j)})

I By Theorem 2, d εt (i , j)→ Pt({π ∈ PN : i 6∼π j)}).

I Finally,

Pt ({π ∈ PN : i 6∼π j)}) = 1 − E (exp(−2U∞τij))

using a standard duality principle.



Thank you !


