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The classical duality concept

Let X and Y be two stochastic processes
on some state spaces S and S ′.

X and Y are dual to each other with duality function ψ if for
x ∈ S and y ∈ S ′

Ex [ψ(Xt , y)] = Ey [ψ(x ,Yt)], t ≥ 0.

(Roughly) equivalent:

I Gψ = Hψ for G and H the generators of X and Y

I s 7→ E[ψ(Xs ,Yt−s)] is constant on [0, t] with t ≥ 0
when X and Y are independent.

Remark: Sub/superduality if equality is replaced by inequality.
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Generalization of the concept: Pathwise duality

Y is a (strong) pathwise dual to X with duality function ψ
if X andY can be coupled such that

s 7→ ψ(Xs ,Yt−s)

is almost surely constant on [0, t] with t ≥ 0,
and Xs− is independent of Yt−s , s ∈ [0, t].

Terminology, overview: Jansen and Kurt ’14
More literature and examples later.

In particle system/population genetics context dual running
backwards into the past as ancestral/genealogical process.
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Random mapping representations of Markov processes

Let X be a continuous-time Markov chain with (finite) state space
S and generator G . Then G can be written in the form of a
random mapping representation:

Let G ⊂ F(S ,S) := {m : S → S} and
let (rm)m∈G be nonnegative constants.

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
, x ∈ S .

Note: This kind of representation is not unique.

The random mapping representation can be used for a Poissonian
construction of the Markov process (→ stochastic flow).
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Poissonian construction of Markov processes

Let ∆ be a Poisson point subset of G ×R with local intensity rmdt.
For s ≤ u, set ∆s,u := ∆ ∩ (G × (s, u]).
Define random maps Xs,t : S → S (s ≤ t) by

Xs,t(x) := mn ◦ · · · ◦m1(x) when

∆s,t := {(m1, t1), . . . , (mn, tn)}, t1 < · · · < tn.

Note that Xt,u ◦ Xs,t = Xs,u for all s ≤ t ≤ u.

Poisson construction of Markov processes
Let X0 be an S-valued r.v., independent of ∆. Setting for s ∈ R,

Xt := Xs,s+t(X0), t ≥ 0

defines a Markov process X = (Xt)t≥0 with generator G .
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Pathwise duality from the Poissonian construction

Let X and Y be continuous-time Markov chains with (finite) state
spaces S and S ′ and generators

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
,

Hf (y) =
∑
m∈G

rm
(
f (m̂(y))− f (y)

)
.

Proposition (Pathwise duality)

Let ψ : S × S ′ → R be a function such that

(∗) ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
x ∈ S , y ∈ S ′, m ∈ G.

Then, X and Y are pathwise dual.

Proof: Use the Poissonian construction.
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Construction of a pathwise dual

Goal:

I Construct in a general setting m̂ and ψ such that (*) holds:

ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
.

General possibility Let S ′ = P(S), the set of all subsets of S , and

m̂(A) = m−1(A) := {x ∈ S : m(x) ∈ A}, A ∈ P(S).

Then equality holds in (*) with respect to the duality function

ψ(x ,A) := 1{x∈A}, x ∈ S ,A ∈ P(S).
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General duality function

ψ(x ,A) := 1{x∈A}, x ∈ S ,A ∈ P(S).

”The dual with state space P(S) tracks the set of configurations
that a particular (set of) configuration(s) may have emerged from.”

This dual may be too unwieldy. ⇒ Restrict the setting!

Find subspaces of P(S) that are invariant
under the inverse image maps m−1 for all m ∈ G.

Focus:

I Monotone and additive functions m
on partially ordered sets.
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Little excursion: Partially ordered sets

Let (S ,≤) be a (finite) partially ordered set.

I For A ⊂ S define A↓ := {x ∈ S : x ≤ y for some y ∈ A}.
I Pdec(S) are the decreasing sets A with A↓ ⊂ A.

I P!dec(S) is a principal ideal if it consists of A with

A = {z}↓ for some z ∈ S .

Define analogously A↑,
increasing sets Pinc(S) and principle filters P!inc(S).
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Little excursion: Partially ordered sets

I In a join-semilattice P!inc(S) is closed under finite
intersections and the supremum is well defined via

{x ∨ y}↑ := {x}↑ ∩ {y}↑

I x ∨ y is the minimal element such that

x ≤ x ∨ y and y ≤ x ∨ y .

I For S finite or bounded join-semilattice we have
∅ 6= A ⊂ P!dec(S) ⇔
A ⊂ Pdec(S) and x , y ∈ A implies x ∨ y ∈ A.

Example:
In the context of interacting particle systems choose for example
I S = P(Λ)(∼= {0, 1}Λ) with partial order ⊂.
I Here, ∨ corresponds to ∪.
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Little excursion: Monotone and additive functions

I A function m is monotone if

x ≤ y implies m(x) ≤ m(y), x , y ∈ S .

I A function m is additive on a join-semilattice
with minimal element 0 if

m(x ∨ y) = m(x) ∨m(y), x , y ∈ S

as well as m(0) = 0.

Remark:

I Additive functions are monotone.
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Invariant subspaces for monotone and additive functions

Proposition (Monotone functions)

Equivalent:

I m is monotone.

I m−1 maps Pdec(S) into itself (invariant subspace!).

I m−1 maps Pinc(S) into itself (invariant subspace!).

Proposition (Additive functions)

Equivalent (on a finite join-semilattice with minimal element):

I m is additive.

I m−1 maps P!dec(S) into itself (invariant subspace!).

I m−1(A) ∈ Pdec(S) for A ∈ P!dec(S) (additive functions monotone)

I x , y ∈ m−1(A)⇒ x ∨ y ∈ m−1(A)
since m(x ∨ y) = m(x) ∨m(y) and m(x) ∨m(y) ∈ A.
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Monotonically and additively representable processes

If a Markov process X has random mapping representation

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
, x ∈ S

where

I G contains only monotone functions then we call X
monotonically representable.

I G contains only additive functions then we call X
additively representable.
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Pathwise duality for additively representable processes

S ′ is a dual of S if there is a bijection S 3 x 7→ x ′ ∈ S ′ (x ′′ = x)
with

x ≤ y ⇔ x ′ ≥ y ′.

Examples:

I 1 S ′ := S equipped with the reversed order and x ′ = x .

I 2 For S ⊂ P(Λ) equipped with ⊂ take for x ′ := Λ\x = xC ,
the complement of x , and S ′ := {x ′ : x ∈ S}.

Now consider for x ∈ S , y ∈ S ′

ψ(x , y) = 1{x≤y ′} = 1{y≤x ′}

I 1 ψ(x , y) = 1{x≤y ′} = 1{x≤y}
Siegmund’s duality on a totally ordered space S

I 2 ψ(x , y) = 1{x⊂Λ\y} = 1{x∩y=∅}
Additive interacting particle systems
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Pathwise duality for additively representable processes

Lemma (Duals to additive maps)

For additive m : S → S there exists (a unique) m′ : S ′ → S ′ with

(∗) 1{m(x)≤y ′} = 1{x≤(m′(y))′}, x ∈ S , y ∈ S ′.

Proof

I By additivity m−1 maps sets of the form

A = {y ′}↓ = {x ∈ S : x ≤ y ′}, y ∈ S ′

into sets of this form.

I Thus, there exists an element z ∈ S such that

m−1
(
{x ∈ S : x ≤ y ′}

)
= {x ∈ S : x ≤ z}

Set m′(y) = z ′, y ∈ S ′

⇔ m(x) ≤ y ′ if and only if x ≤ (m′(y))′
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Pathwise duality for additively representable processes

Theorem (Additive systems duality)

Let S be a finite lattice and let X be a Markov process in S whose
generator has a random mapping representation of the form

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
, x ∈ S ,

where all maps m ∈ G are additive (additively representable).
Then the Markov process Y in S ′ with generator

Hf (y) :=
∑
m∈G

rm
(
f (m′(y))− f (y)

)
, y ∈ S ′

is pathwise dual to X with respect to the duality function

ψ(x , y) = 1{x≤y ′}, x ∈ S , y ∈ S ′.
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Percolation structure for additively representable processes

Equip S := P(Λ) with ⊂ and let m be an additive map S → S .
Define M ⊂ Λ× Λ via

m(x) = {j ∈ Λ : (i , j) ∈ M for some i ∈ x} x ∈ S .

Vice versa, any such M ⊂ Λ× Λ
corresponds to an additive map m.
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Percolation structure for additively representable processes

Let S ′ = S and x ′ = xC . Then we have an additive m′ : S → S
dual to m with the duality function

ψ(x , y) = 1{x⊂Λ\y} = 1{x∩y=∅}, x , y ∈ S .

The M ′ ⊂ Λ× Λ corresponding to m′ is given by

M ′ =
{

(j , i) : (i , j) ∈ M
}
.
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Percolation structure for additively representable processes

Percolation representation

Plot space-time Λ× R with time upwards.
At rate rm we consider the M associated to m and

I draw an arrow from (i , t) to (j , t) (i 6= j) whenever (i , j) ∈ M

I place a “blocking symbol” at (i , t) whenever (i , i) 6∈ M

”Open paths”  travel upwards along arrows and avoid blocking
symbols. Then

Xs,u(x) = {j ∈ Λ : (i , s) (j , u) for some i ∈ x},

and the dual process is obtained via open paths using the reversed
arrows (in reversed time).
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Percolation structure for additively representable processes

Voter model
S = {0, 1}Λ ∼= P(Λ).

Xt

X0

Y0

Yt
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Percolation structure for additively representable processes

Extensions
The above percolation structure statements also apply if

I Λ is a partially ordered set and S = Pdec(Λ).

I S is a distributive lattice with

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x , y , z ∈ S .

One can show that S ∼= Pdec(Λ) for a partially ordered set Λ
by Birkhoff’s representation theorem.

In this case for i , j , i ′, j ′ ∈ Λ

(i) (i , j) ∈ M and i ≤ i ′ implies (i ′, j) ∈ M,

(ii) (i , j) ∈ M and j ≥ j ′ implies (i , j ′) ∈ M.
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Percolation structure for additively representable processes

Two stage contact process (Krone ’99)
S = {0, 1, 2}Λ ”1” younger individual ”2” older individual.
Older individuals give birth to younger individuals who ”grow up”
and possibly die at a higher rate than older individuals.
S ∼= Pdec(Λ× {0, 1}).

0 1 0 2

0 1 2 0

X0

Xt

0 2 2 1

2 0 1 2

Yt

Y0
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Pathwise duality for monotonically representable processes

Now consider the duality function

φ(x ,B) := 1{x≤y ′ for some y∈B}, x ∈ S , B ∈ P(S ′).

Lemma (Duals to monotone maps)

For monotone m : S → S there exist m∗ : P(S ′)→ P(S ′) with

(∗) 1{m(x)≤y ′ for some y∈B} = 1{x≤y ′ for some y∈m∗(B)}.

Proof idea
I By monotonicity m−1 maps decreasing sets of the form

A = {B ′}↓ = {x ∈ S : x ≤ y ′ for some y ∈ B}, B ∈ P(S ′)

into sets of this form.
I Construct appropriate m∗ :m∗(B)′ :=

⋃
x∈B(m−1({x ′}↓))max
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Pathwise duality for monotonically representable processes

Theorem (Monotone systems duality)

Let S be a finite partially ordered set and let X be a Markov
process in S whose generator has a random mapping
representation of the form

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
x ∈ S ,

where all maps m ∈ G are monotone (monotonically rep.).
Then the P(S ′)-valued Markov process Y ∗ with generator

H∗f (B) =
∑
m∈G

rm
(
f (m∗(B))− f (B)

)
, B ∈ P(S ′)

is pathwise dual to X with respect to the duality function φ.
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Pathwise duality for cooperative branching coalescent

State space

I Λ = (V ,E ) be a countable, connected, vertex transitive
(degree D), locally finite graph with vertex set V and set of
(undirected) edges E

I S = P(Λ) ∼= {0, 1}Λ

Examples:

I Λ = Zd with nearest-neighbor edges (D = 2d)

I Λ = KN complete graph (D = N − 1)

I Λ = Td a regular tree (D = d + 1)
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Pathwise duality for cooperative branching coalescent

Continuous-time Markov process X = (Xt)t≥0 on {0, 1}Λ ∼= P(Λ)

I Pairs of particles produce a new particle: 110→ 111

map coopijk for 〈i , j〉, 〈j , k〉 ∈ E at rate β 1
D(D−1)

for particles at sites i and j producing a particle at site k

I Symmetric random walk with coalescence: 10, 11→ 01

map rwij for 〈i , j〉 ∈ E at rate γ 1
D

particle moving from i to j merging with any particle present

I Spontaneous death of particles: 1→ 0

map deathi at rate δ

particle at site i disappears

Remark: One may also include voter votij : 01→ 11, 10→ 00
and exclusion dynamics excij : 10→ 01, 01→ 10
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Pathwise duality for cooperative branching coalescent

Examples considered:

I Λ = Z without spontaneous death:
Sturm, Swart ’15

I Λ = KN complete graph without random walk
(also Λ = Td ,Zd):
Mach, Sturm, Swart, in progress ’17
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Pathwise duality for cooperative branching coalescent

All maps m are monotone, all but cooperative branching are
additive. Let S ′ = S and x ′ = xC . Then the duality function is

φ(x ,B) = 1{x⊂yC for some y∈B} = 1{x∩y=∅ for some y∈B}

for x ∈ S ,B ∈ P(S).

I For the additive functions m there are dual functions m′ with

m(x) ∩ y = ∅ ⇔ x ∩m′(y) = ∅

and we set m∗(B) = {m′(x) : x ∈ B}. We have

rw′ij = votij , death′i = deathi , vot′ij = rwij , exc′ij = excij
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Pathwise duality for cooperative branching coalescent

I For the cooperative branching map we have

coop∗ijk(B) = b
(1)
ijk (B) ∪ b

(2)
ijk (B)

with the definition (restricted to sites ijk)

b(1) : 001→ 011, b(2) : 001→ 101

since

(
coop−1

(
{x}↓

))
max

=

{
{100, 010} if x = 110,

{x} otherwise.

and x ′ := xC .
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Pathwise duality for cooperative branching coalescent

Sturm, Swart ’15
Λ = Z without spontaneous death

I Application of a version of this dual:
Decay rates of the survival probability and the density in the
subcritical regime is order t−1/2

I Additional results regarding phase transitions

βsurv := inf{β > 0 : the process survives},
βupp := inf{β > 0 : the upper invariant law is nontrivial}.

We have 1 ≤ βsurv, βupp <∞.
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Pathwise duality for cooperative branching coalescent

Let S ′ = S with reversed order and consider the duality function

φ̃(x ,B) = 1{x≥y for some y∈B}, x ∈ {0, 1}Λ,B ∈ P(S).

By considering
(
m−1

(
{x}↑

))
min

obtain the dual maps

I Double branching map coop∗ijk(B) = B ∪ dbranijk(B)
with the map dbranijk : 001, 011, 101, 111→ 110

I Random walk map rw∗ij(B) := {y ∈ B : y(i) = 0} ∪ eij(B)
with the map eij : 01→ 10

I Death map death∗i (B) := {y ∈ B : y(i) = 0}.
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Pathwise duality for cooperative branching coalescent

Mach, Sturm, Swart ’17+
Model with cooperative branching and spontaneous death.

I Application of this dual to characterize the behavior of the
process and its dual on KN for N →∞ (mean field model).

I βupp < βsurv on Td with d ≥ 9.

I βupp ≤ βsurv on Zd (conjecture βupp = βsurv ).
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Pathwise duality for monotone and additive processes

Conclusion:

I General framework for obtaining duals, in particular for
(monotone, additive) spatial interacting particle systems.

I Some duals may be interpreted as potential
ancestors/genealogies.
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